Amadeus_Project / app.py
johntito
```
2ef7c17
raw
history blame
3.93 kB
import os
import subprocess
import logging
import torch
import gradio as gr
from scipy.io.wavfile import write
# 自定义模块
import commons
import utils
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
# 配置日志
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# 编译 monotonic_align 模块
def compile_monotonic_align():
try:
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
logger.info("Successfully compiled monotonic_align.")
except subprocess.CalledProcessError as e:
logger.error(f"Failed to compile monotonic_align: {e}")
raise RuntimeError("Compilation of monotonic_align failed.")
# 加载配置和模型
def load_config_and_model(config_path, checkpoint_path):
if not os.path.exists(config_path):
raise FileNotFoundError(f"Config file not found: {config_path}")
if not os.path.exists(checkpoint_path):
raise FileNotFoundError(f"Checkpoint file not found: {checkpoint_path}")
# 加载超参数
hps = utils.get_hparams_from_file(config_path)
logger.info("Loaded hyperparameters from config file.")
# 初始化模型
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model,
)
net_g.eval()
logger.info("Initialized SynthesizerTrn model.")
# 加载预训练权重
utils.load_checkpoint(checkpoint_path, net_g, None)
logger.info(f"Loaded model checkpoint from {checkpoint_path}.")
return hps, net_g
# 文本到语音合成
def text_to_speech(content, hps, net_g):
if not content or not isinstance(content, str):
raise ValueError("Input text is empty or invalid.")
try:
# 将文本转换为序列
stn_tst = text_to_sequence(content, hps.data.text_cleaners)
if hps.data.add_blank:
stn_tst = commons.intersperse(stn_tst, 0)
stn_tst = torch.LongTensor(stn_tst)
# 模型推理
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
audio = net_g.infer(
x_tst, x_tst_lengths, noise_scale=0.667, noise_scale_w=0.8, length_scale=1
)[0][0, 0].data.float().numpy()
return hps.data.sampling_rate, audio
except Exception as e:
logger.error(f"Error during text-to-speech synthesis: {e}")
raise RuntimeError("Failed to generate audio.")
# Gradio 界面
def create_gradio_interface(hps, net_g):
def safe_syn(content):
try:
return text_to_speech(content, hps, net_g)
except Exception as e:
logger.error(f"Error in Gradio interface: {e}")
return None
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("Basic"):
input1 = gr.Textbox(label="Input Text", placeholder="Enter text here...")
submit = gr.Button("Convert", variant="primary")
output1 = gr.Audio(label="Output Audio")
submit.click(safe_syn, input1, output1)
return app
# 主函数
def main():
try:
# 编译 monotonic_align
compile_monotonic_align()
# 加载配置和模型
config_path = "configs/steins_gate_base.json"
checkpoint_path = "G_265000.pth"
hps, net_g = load_config_and_model(config_path, checkpoint_path)
# 创建 Gradio 界面
app = create_gradio_interface(hps, net_g)
logger.info("Starting Gradio interface...")
app.launch()
except Exception as e:
logger.critical(f"Fatal error: {e}")
exit(1)
if __name__ == "__main__":
main()