Spaces:
Sleeping
Sleeping
File size: 4,116 Bytes
ef818ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import pandas as pd
import gradio as gr
import os
from gradio_rangeslider import RangeSlider
from src.filter_utils import filter, filter_cols
# Main Leaderboard containing everything
text_leaderboard = pd.read_csv(os.path.join('assets', 'merged_data.csv'))
text_leaderboard = text_leaderboard.sort_values(by='Clemscore', ascending=False)
open_weight_df = text_leaderboard[text_leaderboard['Open Weight'] == True]
if not open_weight_df.empty: # Check if filtered df is non-empty
max_parameter_size = open_weight_df['Parameters (B)'].max()
# Short leaderboard containing fixed columns
short_leaderboard = filter_cols(text_leaderboard)
## Extract data
langs = []
licenses = []
ip_prices = []
op_prices = []
latencies = []
parameters = []
contexts = []
dates = []
for i in range(len(text_leaderboard)):
lang_splits = text_leaderboard.iloc[i]['Languages'].split(',')
lang_splits = [s.strip() for s in lang_splits]
langs += lang_splits
license_name = text_leaderboard.iloc[i]['License Name']
licenses.append(license_name)
ip_prices.append(text_leaderboard.iloc[i]['Input $/1M tokens'])
op_prices.append(text_leaderboard.iloc[i]['Output $/1M tokens'])
latencies.append(text_leaderboard.iloc[i]['Latency (s)'])
parameters.append(text_leaderboard.iloc[i]['Parameters (B)'])
contexts.append(text_leaderboard.iloc[i]['Context Size (k)'])
dates.append(text_leaderboard.iloc[i]['Release Date'])
langs = list(set(langs))
langs.sort()
licenses = list(set(licenses))
licenses.sort()
max_input_price = max(ip_prices)
max_output_price = max(op_prices)
max_latency = max(latencies)
min_parameters = 0 if pd.isna(min(parameters)) else min(parameters)
max_parameter = max_parameter_size
parameter_step = 1
print(f"MIN {min_parameters}, MAX {max_parameter}")
min_context = min(contexts)
max_context = max(contexts)
context_step = 8
min_date = min(dates)
max_date = max(dates)
TITLE = """<h1 align="center" id="space-title"> LLM Calculator βοΈβ‘ ππ°</h1>"""
CSS = """
#double-slider-1 {height: 100px}
#double-slider-2 {height: 100px}
#double-slider-3 {height: 100px}
#double-slider-4 {height: 100px}
"""
llm_calc_app = gr.Blocks(css=CSS)
with llm_calc_app:
gr.HTML(TITLE)
##################################################
with gr.Row():
#####################################
# First Column
####################################
## Language Select
with gr.Column():
with gr.Row():
lang_dropdown = gr.Dropdown(
choices=langs,
value=[],
multiselect=True,
label="Select Languages π£οΈ"
)
with gr.Row():
start_date = gr.DateTime(
)
end_date = gr.DateTime(
)
llm_calc_app.load()
llm_calc_app.queue()
llm_calc_app.launch()
"""
model_name, input_price, output_price,
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
source,licence_name,licence_url,languages,release_date,
parameters_estimated,parameters_actual,
open_weight,context,
additional_prices_context_caching,
additional_prices_context_storage,
additional_prices_image_input,additional_prices_image_output,additional_prices_video_input,additional_prices_video_output,additional_prices_audio_input,additional_prices_audio_output,clemscore_v1.6.5_multimodal,clemscore_v1.6.5_ascii,clemscore_v1.6,latency_v1.6,latency_v1.6.5_multimodal,latency_v1.6.5_ascii,
average_clemscore,average_latency,parameters
Final list
model_name, input_price, output_price,
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
source,licence_name,licence_url,languages,release_date, open_weight,context, average_clemscore,average_latency,parameters
Filter
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
licence_name+licence_url, languages, release_date, open_weight
RR
model_name, input_price, output_price,
source, release_date
"""
|