File size: 4,116 Bytes
ef818ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import pandas as pd
import gradio as gr
import os
from gradio_rangeslider import RangeSlider

from src.filter_utils import filter, filter_cols

# Main Leaderboard containing everything
text_leaderboard = pd.read_csv(os.path.join('assets', 'merged_data.csv'))
text_leaderboard = text_leaderboard.sort_values(by='Clemscore', ascending=False)  

open_weight_df = text_leaderboard[text_leaderboard['Open Weight'] == True]
if not open_weight_df.empty:  # Check if filtered df is non-empty
    max_parameter_size = open_weight_df['Parameters (B)'].max()

# Short leaderboard containing fixed columns
short_leaderboard = filter_cols(text_leaderboard)

## Extract data
langs = []
licenses = []
ip_prices = []
op_prices = []
latencies = []
parameters = []
contexts = []
dates = []

for i in range(len(text_leaderboard)):
    lang_splits = text_leaderboard.iloc[i]['Languages'].split(',')
    lang_splits = [s.strip() for s in lang_splits]
    langs += lang_splits
    license_name = text_leaderboard.iloc[i]['License Name']

    licenses.append(license_name)
    ip_prices.append(text_leaderboard.iloc[i]['Input $/1M tokens'])
    op_prices.append(text_leaderboard.iloc[i]['Output $/1M tokens'])
    latencies.append(text_leaderboard.iloc[i]['Latency (s)'])
    parameters.append(text_leaderboard.iloc[i]['Parameters (B)'])
    contexts.append(text_leaderboard.iloc[i]['Context Size (k)'])
    dates.append(text_leaderboard.iloc[i]['Release Date'])


langs = list(set(langs))
langs.sort()

licenses = list(set(licenses))
licenses.sort()

max_input_price = max(ip_prices)
max_output_price = max(op_prices)
max_latency = max(latencies)

min_parameters = 0 if pd.isna(min(parameters)) else min(parameters)
max_parameter = max_parameter_size
parameter_step = 1
print(f"MIN {min_parameters}, MAX {max_parameter}")

min_context = min(contexts)
max_context = max(contexts)
context_step = 8

min_date = min(dates)
max_date = max(dates)

TITLE = """<h1 align="center" id="space-title"> LLM Calculator βš–οΈβš‘ πŸ“πŸ’°</h1>"""
CSS = """
#double-slider-1 {height: 100px}
#double-slider-2 {height: 100px}
#double-slider-3 {height: 100px}
#double-slider-4 {height: 100px}
"""

llm_calc_app = gr.Blocks(css=CSS)
with llm_calc_app:

    gr.HTML(TITLE)

    ##################################################

    with gr.Row():

        #####################################
        # First Column
        ####################################
        ## Language Select
        with gr.Column():

            with gr.Row():
                lang_dropdown = gr.Dropdown(
                    choices=langs,
                    value=[],
                    multiselect=True,
                    label="Select Languages πŸ—£οΈ"
                )

            with gr.Row():
                start_date = gr.DateTime(
                )

                end_date = gr.DateTime(
                )


    llm_calc_app.load()
llm_calc_app.queue()
llm_calc_app.launch()



"""
model_name, input_price, output_price,
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
source,licence_name,licence_url,languages,release_date,
parameters_estimated,parameters_actual,

open_weight,context, 

additional_prices_context_caching,
additional_prices_context_storage,
additional_prices_image_input,additional_prices_image_output,additional_prices_video_input,additional_prices_video_output,additional_prices_audio_input,additional_prices_audio_output,clemscore_v1.6.5_multimodal,clemscore_v1.6.5_ascii,clemscore_v1.6,latency_v1.6,latency_v1.6.5_multimodal,latency_v1.6.5_ascii,

average_clemscore,average_latency,parameters

Final list

model_name, input_price, output_price,
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
source,licence_name,licence_url,languages,release_date, open_weight,context, average_clemscore,average_latency,parameters


Filter
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
licence_name+licence_url, languages, release_date, open_weight

RR
model_name, input_price, output_price,
source, release_date

"""