Spaces:
Sleeping
Sleeping
Update audio_processing.py
Browse files- audio_processing.py +34 -5
audio_processing.py
CHANGED
@@ -21,20 +21,27 @@ logger = logging.getLogger(__name__)
|
|
21 |
|
22 |
# Global variables for models
|
23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
-
compute_type = "float16" if device == "cuda" else "
|
25 |
whisper_model = None
|
26 |
diarization_pipeline = None
|
27 |
|
28 |
def load_models(model_size="small"):
|
29 |
-
global whisper_model, diarization_pipeline
|
30 |
|
31 |
# Load Whisper model
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Try to initialize diarization pipeline
|
35 |
try:
|
36 |
diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hf_token)
|
37 |
-
|
|
|
38 |
except Exception as e:
|
39 |
logger.warning(f"Diarization pipeline initialization failed: {str(e)}. Diarization will not be available.")
|
40 |
diarization_pipeline = None
|
@@ -136,4 +143,26 @@ def process_audio(audio_file, translate=False, model_size="small"):
|
|
136 |
logger.error(f"An error occurred during audio processing: {str(e)}")
|
137 |
raise
|
138 |
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Global variables for models
|
23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
+
compute_type = "float16" if device == "cuda" else "int8"
|
25 |
whisper_model = None
|
26 |
diarization_pipeline = None
|
27 |
|
28 |
def load_models(model_size="small"):
|
29 |
+
global whisper_model, diarization_pipeline, device, compute_type
|
30 |
|
31 |
# Load Whisper model
|
32 |
+
try:
|
33 |
+
whisper_model = whisperx.load_model(model_size, device, compute_type=compute_type)
|
34 |
+
except RuntimeError as e:
|
35 |
+
logger.warning(f"Failed to load Whisper model on {device}. Falling back to CPU. Error: {str(e)}")
|
36 |
+
device = "cpu"
|
37 |
+
compute_type = "int8"
|
38 |
+
whisper_model = whisperx.load_model(model_size, device, compute_type=compute_type)
|
39 |
|
40 |
# Try to initialize diarization pipeline
|
41 |
try:
|
42 |
diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hf_token)
|
43 |
+
if device == "cuda":
|
44 |
+
diarization_pipeline = diarization_pipeline.to(torch.device(device))
|
45 |
except Exception as e:
|
46 |
logger.warning(f"Diarization pipeline initialization failed: {str(e)}. Diarization will not be available.")
|
47 |
diarization_pipeline = None
|
|
|
143 |
logger.error(f"An error occurred during audio processing: {str(e)}")
|
144 |
raise
|
145 |
|
146 |
+
def merge_nearby_segments(segments, time_threshold=0.5, similarity_threshold=0.7):
|
147 |
+
merged = []
|
148 |
+
for segment in segments:
|
149 |
+
if not merged or segment['start'] - merged[-1]['end'] > time_threshold:
|
150 |
+
merged.append(segment)
|
151 |
+
else:
|
152 |
+
# Find the overlap
|
153 |
+
matcher = SequenceMatcher(None, merged[-1]['text'], segment['text'])
|
154 |
+
match = matcher.find_longest_match(0, len(merged[-1]['text']), 0, len(segment['text']))
|
155 |
+
|
156 |
+
if match.size / len(segment['text']) > similarity_threshold:
|
157 |
+
# Merge the segments
|
158 |
+
merged_text = merged[-1]['text'] + segment['text'][match.b + match.size:]
|
159 |
+
merged_translated = merged[-1].get('translated', '') + segment.get('translated', '')[match.b + match.size:]
|
160 |
+
|
161 |
+
merged[-1]['end'] = segment['end']
|
162 |
+
merged[-1]['text'] = merged_text
|
163 |
+
if 'translated' in segment:
|
164 |
+
merged[-1]['translated'] = merged_translated
|
165 |
+
else:
|
166 |
+
# If no significant overlap, append as a new segment
|
167 |
+
merged.append(segment)
|
168 |
+
return merged
|