Spaces:
Sleeping
Sleeping
Update audio_processing.py
Browse files- audio_processing.py +99 -106
audio_processing.py
CHANGED
@@ -1,112 +1,105 @@
|
|
|
|
1 |
import torch
|
2 |
-
import
|
3 |
-
|
4 |
-
import
|
5 |
-
|
6 |
-
from
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
waveform = torch.tensor(waveform).float()
|
17 |
-
|
18 |
-
if sample_rate != SAMPLING_RATE:
|
19 |
-
waveform = ta.functional.resample(waveform, sample_rate, SAMPLING_RATE)
|
20 |
-
|
21 |
-
# Ensure the audio is in the correct shape (mono)
|
22 |
-
if waveform.dim() > 1 and waveform.shape[0] > 1:
|
23 |
-
waveform = waveform.mean(dim=0, keepdim=True)
|
24 |
-
elif waveform.dim() == 1:
|
25 |
-
waveform = waveform.unsqueeze(0)
|
26 |
-
|
27 |
-
return waveform, SAMPLING_RATE
|
28 |
-
|
29 |
-
|
30 |
-
@spaces.GPU
|
31 |
-
def detect_language(waveform):
|
32 |
-
whisper_model = get_whisper_model_small()
|
33 |
-
|
34 |
-
# Use Whisper's preprocessing
|
35 |
-
audio_tensor = whisper.pad_or_trim(waveform.squeeze())
|
36 |
-
mel = whisper.log_mel_spectrogram(audio_tensor).to(whisper_model.device)
|
37 |
-
|
38 |
-
# Detect language
|
39 |
-
_, probs = whisper_model.detect_language(mel)
|
40 |
-
detected_lang = max(probs, key=probs.get)
|
41 |
-
|
42 |
-
print(f"Audio shape: {audio_tensor.shape}")
|
43 |
-
print(f"Mel spectrogram shape: {mel.shape}")
|
44 |
-
print(f"Detected language: {detected_lang}")
|
45 |
-
print("Language probabilities:", probs)
|
46 |
-
|
47 |
-
return detected_lang
|
48 |
-
|
49 |
-
|
50 |
-
@spaces.GPU
|
51 |
-
def process_long_audio(waveform, sample_rate, task="transcribe", language=None):
|
52 |
-
input_length = waveform.shape[1]
|
53 |
-
chunk_length = int(CHUNK_LENGTH_S * sample_rate)
|
54 |
|
55 |
-
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
60 |
|
61 |
-
results = []
|
62 |
-
for chunk in chunks:
|
63 |
-
input_features = processor(chunk.squeeze(), sampling_rate=sample_rate, return_tensors="pt").input_features.to(
|
64 |
-
device)
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
else:
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
def
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
return detected_lang, transcription, translation
|
94 |
-
|
95 |
-
|
96 |
-
# Gradio interface
|
97 |
-
iface = gr.Interface(
|
98 |
-
fn=process_audio,
|
99 |
-
inputs=gr.Audio(),
|
100 |
-
outputs=[
|
101 |
-
gr.Textbox(label="Detected Language"),
|
102 |
-
gr.Textbox(label="Transcription", lines=5),
|
103 |
-
gr.Textbox(label="Translation", lines=5)
|
104 |
-
],
|
105 |
-
title="Audio Transcription and Translation",
|
106 |
-
description="Upload an audio file to detect its language, transcribe, and translate it.",
|
107 |
-
allow_flagging="never",
|
108 |
-
css=".output-textbox { font-family: 'Noto Sans Devanagari', sans-serif; font-size: 18px; }"
|
109 |
-
)
|
110 |
-
|
111 |
-
if __name__ == "__main__":
|
112 |
-
iface.launch()
|
|
|
1 |
+
import whisperx
|
2 |
import torch
|
3 |
+
import numpy as np
|
4 |
+
from scipy.signal import resample
|
5 |
+
import numpy as np
|
6 |
+
import whisperx
|
7 |
+
from pyannote.audio import Pipeline
|
8 |
+
import os
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
hf_token = os.getenv("HF_TOKEN")
|
14 |
+
import whisperx
|
15 |
+
import torch
|
16 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
import whisperx
|
19 |
+
import torch
|
20 |
+
import numpy as np
|
21 |
|
22 |
+
import whisperx
|
23 |
+
import torch
|
24 |
+
import numpy as np
|
25 |
+
CHUNK_LENGTH= 30
|
26 |
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
import whisperx
|
29 |
+
import torch
|
30 |
+
import numpy as np
|
31 |
+
|
32 |
+
def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000): # 30 seconds at 16kHz
|
33 |
+
chunks = []
|
34 |
+
for i in range(0, len(audio), chunk_size):
|
35 |
+
chunk = audio[i:i+chunk_size]
|
36 |
+
if len(chunk) < chunk_size:
|
37 |
+
chunk = np.pad(chunk, (0, chunk_size - len(chunk)))
|
38 |
+
chunks.append(chunk)
|
39 |
+
return chunks
|
40 |
+
|
41 |
+
def process_audio(audio_file):
|
42 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
+
compute_type = "float32"
|
44 |
+
audio = whisperx.load_audio(audio_file)
|
45 |
+
model = whisperx.load_model("small", device, compute_type=compute_type)
|
46 |
+
|
47 |
+
# Initialize speaker diarization pipeline
|
48 |
+
diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hf_token)
|
49 |
+
diarization_pipeline = diarization_pipeline.to(torch.device(device))
|
50 |
+
|
51 |
+
# Perform diarization on the entire audio
|
52 |
+
diarization_result = diarization_pipeline({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": 16000})
|
53 |
+
|
54 |
+
|
55 |
+
# Preprocess audio into consistent chunks
|
56 |
+
chunks = preprocess_audio(audio)
|
57 |
+
|
58 |
+
language_segments = []
|
59 |
+
final_segments = []
|
60 |
+
|
61 |
+
for i, chunk in enumerate(chunks):
|
62 |
+
# Detect language for this chunk
|
63 |
+
lang = model.detect_language(chunk)
|
64 |
+
|
65 |
+
# Transcribe this chunk
|
66 |
+
result = model.transcribe(chunk, language=lang)
|
67 |
+
|
68 |
+
chunk_start_time = i * 5 # Each chunk is 30 seconds
|
69 |
+
|
70 |
+
# Adjust timestamps and add language information
|
71 |
+
for segment in result["segments"]:
|
72 |
+
segment_start = chunk_start_time + segment["start"]
|
73 |
+
segment_end = chunk_start_time + segment["end"]
|
74 |
+
segment["start"] = segment_start
|
75 |
+
segment["end"] = segment_end
|
76 |
+
segment["language"] = lang
|
77 |
+
|
78 |
+
speakers = []
|
79 |
+
for turn, track, speaker in diarization_result.itertracks(yield_label=True):
|
80 |
+
if turn.start <= segment_end and turn.end >= segment_start:
|
81 |
+
speakers.append(speaker)
|
82 |
+
if speakers:
|
83 |
+
segment["speaker"] = max(set(speakers), key=speakers.count)
|
84 |
else:
|
85 |
+
segment["speaker"] = "Unknown"
|
86 |
+
|
87 |
+
final_segments.append(segment)
|
88 |
+
# Add language segment
|
89 |
+
language_segments.append({
|
90 |
+
"language": lang,
|
91 |
+
"start": chunk_start_time,
|
92 |
+
"end": chunk_start_time + 5
|
93 |
+
})
|
94 |
+
|
95 |
+
return language_segments, final_segments
|
96 |
+
|
97 |
+
def print_results(language, language_probs, segments):
|
98 |
+
print(f"Detected Language: {language}")
|
99 |
+
print("Language Probabilities:")
|
100 |
+
for lang, prob in language_probs.items():
|
101 |
+
print(f" {lang}: {prob:.4f}")
|
102 |
+
|
103 |
+
print("\nTranscription:")
|
104 |
+
for segment in segments:
|
105 |
+
print(f"[{segment['start']:.2f}s - {segment['end']:.2f}s] Speaker {segment['speaker']}: {segment['text']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|