Spaces:
Sleeping
Sleeping
Optimized audio_processing.py with optional diarization
Browse files- audio_processing.py +28 -35
audio_processing.py
CHANGED
@@ -16,38 +16,41 @@ hf_token = os.getenv("HF_TOKEN")
|
|
16 |
CHUNK_LENGTH = 30
|
17 |
OVERLAP = 2
|
18 |
|
19 |
-
logging.basicConfig(level=logging.INFO)
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
-
# Global variables for models
|
23 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
-
compute_type = "float16" if device == "cuda" else "int8"
|
25 |
-
whisper_model = None
|
26 |
-
diarization_pipeline = None
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
32 |
try:
|
33 |
-
|
|
|
|
|
34 |
except RuntimeError as e:
|
35 |
logger.warning(f"Failed to load Whisper model on {device}. Falling back to CPU. Error: {str(e)}")
|
36 |
device = "cpu"
|
37 |
compute_type = "int8"
|
38 |
-
|
|
|
|
|
|
|
39 |
|
|
|
40 |
def load_diarization_pipeline():
|
41 |
-
|
42 |
-
|
43 |
-
# Try to initialize diarization pipeline
|
44 |
try:
|
45 |
-
|
46 |
-
if
|
47 |
-
|
|
|
|
|
48 |
except Exception as e:
|
49 |
logger.warning(f"Diarization pipeline initialization failed: {str(e)}. Diarization will not be available.")
|
50 |
-
|
|
|
51 |
|
52 |
def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000, overlap=OVERLAP*16000):
|
53 |
chunks = []
|
@@ -58,18 +61,17 @@ def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000, overlap=OVERLAP*16000
|
|
58 |
chunks.append(chunk)
|
59 |
return chunks
|
60 |
|
|
|
61 |
def merge_nearby_segments(segments, time_threshold=0.5, similarity_threshold=0.7):
|
62 |
merged = []
|
63 |
for segment in segments:
|
64 |
if not merged or segment['start'] - merged[-1]['end'] > time_threshold:
|
65 |
merged.append(segment)
|
66 |
else:
|
67 |
-
# Find the overlap
|
68 |
matcher = SequenceMatcher(None, merged[-1]['text'], segment['text'])
|
69 |
match = matcher.find_longest_match(0, len(merged[-1]['text']), 0, len(segment['text']))
|
70 |
|
71 |
if match.size / len(segment['text']) > similarity_threshold:
|
72 |
-
# Merge the segments
|
73 |
merged_text = merged[-1]['text'] + segment['text'][match.b + match.size:]
|
74 |
merged_translated = merged[-1].get('translated', '') + segment.get('translated', '')[match.b + match.size:]
|
75 |
|
@@ -78,11 +80,9 @@ def merge_nearby_segments(segments, time_threshold=0.5, similarity_threshold=0.7
|
|
78 |
if 'translated' in segment:
|
79 |
merged[-1]['translated'] = merged_translated
|
80 |
else:
|
81 |
-
# If no significant overlap, append as a new segment
|
82 |
merged.append(segment)
|
83 |
return merged
|
84 |
|
85 |
-
# Helper function to get the most common speaker in a time range
|
86 |
def get_most_common_speaker(diarization_result, start_time, end_time):
|
87 |
speakers = []
|
88 |
for turn, _, speaker in diarization_result.itertracks(yield_label=True):
|
@@ -90,7 +90,6 @@ def get_most_common_speaker(diarization_result, start_time, end_time):
|
|
90 |
speakers.append(speaker)
|
91 |
return max(set(speakers), key=speakers.count) if speakers else "Unknown"
|
92 |
|
93 |
-
# Helper function to split long audio files
|
94 |
def split_audio(audio, max_duration=30):
|
95 |
sample_rate = 16000
|
96 |
max_samples = max_duration * sample_rate
|
@@ -104,25 +103,19 @@ def split_audio(audio, max_duration=30):
|
|
104 |
|
105 |
return splits
|
106 |
|
107 |
-
# Main processing function with optimizations
|
108 |
@spaces.GPU(duration=60)
|
109 |
def process_audio(audio_file, translate=False, model_size="small", use_diarization=True):
|
110 |
-
|
111 |
-
|
112 |
-
if whisper_model is None:
|
113 |
-
load_models(model_size)
|
114 |
-
|
115 |
start_time = time.time()
|
116 |
|
117 |
try:
|
|
|
118 |
audio = whisperx.load_audio(audio_file)
|
119 |
audio_splits = split_audio(audio)
|
120 |
|
121 |
-
# Perform diarization if requested and pipeline is available
|
122 |
diarization_result = None
|
123 |
if use_diarization:
|
124 |
-
|
125 |
-
load_diarization_pipeline()
|
126 |
if diarization_pipeline is not None:
|
127 |
try:
|
128 |
diarization_result = diarization_pipeline({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": 16000})
|
@@ -139,8 +132,8 @@ def process_audio(audio_file, translate=False, model_size="small", use_diarizati
|
|
139 |
lang = result["language"]
|
140 |
|
141 |
for segment in result["segments"]:
|
142 |
-
segment_start = segment["start"] + (i * 30)
|
143 |
-
segment_end = segment["end"] + (i * 30)
|
144 |
|
145 |
speaker = "Unknown"
|
146 |
if diarization_result is not None:
|
|
|
16 |
CHUNK_LENGTH = 30
|
17 |
OVERLAP = 2
|
18 |
|
19 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
@spaces.GPU(duration=60)
|
24 |
+
def load_whisper_model(model_size="small"):
|
25 |
+
logger.info(f"Loading Whisper model (size: {model_size})...")
|
26 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
+
compute_type = "float16" if device == "cuda" else "int8"
|
28 |
try:
|
29 |
+
model = whisperx.load_model(model_size, device, compute_type=compute_type)
|
30 |
+
logger.info(f"Whisper model loaded successfully on {device}")
|
31 |
+
return model
|
32 |
except RuntimeError as e:
|
33 |
logger.warning(f"Failed to load Whisper model on {device}. Falling back to CPU. Error: {str(e)}")
|
34 |
device = "cpu"
|
35 |
compute_type = "int8"
|
36 |
+
model = whisperx.load_model(model_size, device, compute_type=compute_type)
|
37 |
+
logger.info("Whisper model loaded successfully on CPU")
|
38 |
+
return model
|
39 |
+
|
40 |
|
41 |
+
@spaces.GPU(duration=60)
|
42 |
def load_diarization_pipeline():
|
43 |
+
logger.info("Loading diarization pipeline...")
|
|
|
|
|
44 |
try:
|
45 |
+
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hf_token)
|
46 |
+
if torch.cuda.is_available():
|
47 |
+
pipeline = pipeline.to(torch.device("cuda"))
|
48 |
+
logger.info("Diarization pipeline loaded successfully")
|
49 |
+
return pipeline
|
50 |
except Exception as e:
|
51 |
logger.warning(f"Diarization pipeline initialization failed: {str(e)}. Diarization will not be available.")
|
52 |
+
return None
|
53 |
+
|
54 |
|
55 |
def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000, overlap=OVERLAP*16000):
|
56 |
chunks = []
|
|
|
61 |
chunks.append(chunk)
|
62 |
return chunks
|
63 |
|
64 |
+
|
65 |
def merge_nearby_segments(segments, time_threshold=0.5, similarity_threshold=0.7):
|
66 |
merged = []
|
67 |
for segment in segments:
|
68 |
if not merged or segment['start'] - merged[-1]['end'] > time_threshold:
|
69 |
merged.append(segment)
|
70 |
else:
|
|
|
71 |
matcher = SequenceMatcher(None, merged[-1]['text'], segment['text'])
|
72 |
match = matcher.find_longest_match(0, len(merged[-1]['text']), 0, len(segment['text']))
|
73 |
|
74 |
if match.size / len(segment['text']) > similarity_threshold:
|
|
|
75 |
merged_text = merged[-1]['text'] + segment['text'][match.b + match.size:]
|
76 |
merged_translated = merged[-1].get('translated', '') + segment.get('translated', '')[match.b + match.size:]
|
77 |
|
|
|
80 |
if 'translated' in segment:
|
81 |
merged[-1]['translated'] = merged_translated
|
82 |
else:
|
|
|
83 |
merged.append(segment)
|
84 |
return merged
|
85 |
|
|
|
86 |
def get_most_common_speaker(diarization_result, start_time, end_time):
|
87 |
speakers = []
|
88 |
for turn, _, speaker in diarization_result.itertracks(yield_label=True):
|
|
|
90 |
speakers.append(speaker)
|
91 |
return max(set(speakers), key=speakers.count) if speakers else "Unknown"
|
92 |
|
|
|
93 |
def split_audio(audio, max_duration=30):
|
94 |
sample_rate = 16000
|
95 |
max_samples = max_duration * sample_rate
|
|
|
103 |
|
104 |
return splits
|
105 |
|
|
|
106 |
@spaces.GPU(duration=60)
|
107 |
def process_audio(audio_file, translate=False, model_size="small", use_diarization=True):
|
108 |
+
logger.info(f"Starting audio processing: translate={translate}, model_size={model_size}, use_diarization={use_diarization}")
|
|
|
|
|
|
|
|
|
109 |
start_time = time.time()
|
110 |
|
111 |
try:
|
112 |
+
whisper_model = load_whisper_model(model_size)
|
113 |
audio = whisperx.load_audio(audio_file)
|
114 |
audio_splits = split_audio(audio)
|
115 |
|
|
|
116 |
diarization_result = None
|
117 |
if use_diarization:
|
118 |
+
diarization_pipeline = load_diarization_pipeline()
|
|
|
119 |
if diarization_pipeline is not None:
|
120 |
try:
|
121 |
diarization_result = diarization_pipeline({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": 16000})
|
|
|
132 |
lang = result["language"]
|
133 |
|
134 |
for segment in result["segments"]:
|
135 |
+
segment_start = segment["start"] + (i * 30)
|
136 |
+
segment_end = segment["end"] + (i * 30)
|
137 |
|
138 |
speaker = "Unknown"
|
139 |
if diarization_result is not None:
|