Kr08 commited on
Commit
f36e52e
·
verified ·
1 Parent(s): 77c84e0

Gradio ASR - first commit

Browse files
Files changed (4) hide show
  1. app.py +12 -0
  2. audio_processing.py +135 -0
  3. config.py +8 -0
  4. model_utils.py +39 -0
app.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from model_utils import load_models
3
+ from audio_processing import iface
4
+
5
+ # Clear GPU cache and load models at startup
6
+ torch.cuda.empty_cache()
7
+ load_models()
8
+
9
+ if __name__ == "__main__":
10
+ iface.launch()
11
+
12
+
audio_processing.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import whisper
3
+ import numpy as np
4
+ import torchaudio as ta
5
+ import gradio as gr
6
+ from model_utils import get_processor, get_model, get_whisper_model_small, get_device
7
+ from config import SAMPLING_RATE, CHUNK_LENGTH_S
8
+ import subprocess
9
+
10
+ import subprocess
11
+ import torchaudio as ta
12
+
13
+ def resample_with_ffmpeg(input_file, output_file, target_sr=16000):
14
+ command = [
15
+ 'ffmpeg', '-i', input_file, '-ar', str(target_sr), output_file
16
+ ]
17
+ subprocess.run(command, check=True)
18
+
19
+ def detect_language(audio):
20
+ whisper_model = get_whisper_model_small()
21
+
22
+ # Save the input audio to a temporary file
23
+ ta.save("input_audio.wav", torch.tensor(audio[1]).unsqueeze(0), audio[0])
24
+
25
+ # Resample if necessary using ffmpeg
26
+ if audio[0] != SAMPLING_RATE:
27
+ resample_with_ffmpeg("input_audio.wav", "resampled_audio.wav", target_sr=SAMPLING_RATE)
28
+ audio_tensor, _ = ta.load("resampled_audio.wav")
29
+ else:
30
+ audio_tensor = torch.tensor(audio[1]).float()
31
+
32
+ # Ensure the audio is in the correct shape (mono)
33
+ if audio_tensor.dim() == 2:
34
+ audio_tensor = audio_tensor.mean(dim=0)
35
+
36
+ # Use Whisper's preprocessing
37
+ audio_tensor = whisper.pad_or_trim(audio_tensor)
38
+ print(f"Audio length after pad/trim: {audio_tensor.shape[-1] / SAMPLING_RATE} seconds")
39
+ mel = whisper.log_mel_spectrogram(audio_tensor).to(whisper_model.device)
40
+
41
+ # Detect language
42
+ _, probs = whisper_model.detect_language(mel)
43
+ detected_lang = max(probs, key=probs.get)
44
+
45
+ print(f"Audio shape: {audio_tensor.shape}")
46
+ print(f"Mel spectrogram shape: {mel.shape}")
47
+ print(f"Detected language: {detected_lang}")
48
+ print("Language probabilities:", probs)
49
+
50
+ return detected_lang
51
+
52
+
53
+ def process_long_audio(audio, task="transcribe", language=None):
54
+ if audio[0] != SAMPLING_RATE:
55
+ # Save the input audio to a file for ffmpeg processing
56
+ ta.save("input_audio_1.wav", torch.tensor(audio[1]).unsqueeze(0), audio[0])
57
+
58
+ # Resample using ffmpeg
59
+ try:
60
+ resample_with_ffmpeg("input_audio_1.wav", "resampled_audio_2.wav", target_sr=SAMPLING_RATE)
61
+ except subprocess.CalledProcessError as e:
62
+ print(f"ffmpeg failed: {e.stderr}")
63
+ raise e
64
+
65
+ waveform, _ = ta.load("resampled_audio_2.wav")
66
+ else:
67
+ waveform = torch.tensor(audio[1]).float()
68
+
69
+ # Ensure the audio is in the correct shape (mono)
70
+ if waveform.dim() == 2:
71
+ waveform = waveform.mean(dim=0)
72
+
73
+ print(f"Waveform shape after processing: {waveform.shape}")
74
+
75
+ if waveform.numel() == 0:
76
+ raise ValueError("Waveform is empty. Please check the input audio file.")
77
+
78
+ input_length = waveform.shape[0] # Since waveform is 1D, access the length with shape[0]
79
+ chunk_length = int(CHUNK_LENGTH_S * SAMPLING_RATE)
80
+
81
+ # Corrected slicing for 1D tensor
82
+ chunks = [waveform[i:i + chunk_length] for i in range(0, input_length, chunk_length)]
83
+
84
+ # Initialize the processor
85
+ processor = get_processor()
86
+ model = get_model()
87
+ device = get_device()
88
+
89
+ results = []
90
+ for chunk in chunks:
91
+ input_features = processor(chunk, sampling_rate=SAMPLING_RATE, return_tensors="pt").input_features.to(device)
92
+
93
+ with torch.no_grad():
94
+ if task == "translate":
95
+ forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="translate")
96
+ generated_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
97
+ else:
98
+ generated_ids = model.generate(input_features)
99
+
100
+ transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
101
+ results.extend(transcription)
102
+
103
+ # Clear GPU cache
104
+ torch.cuda.empty_cache()
105
+
106
+ return " ".join(results)
107
+
108
+
109
+ def process_audio(audio):
110
+ if audio is None:
111
+ return "No file uploaded", "", ""
112
+
113
+ detected_lang = detect_language(audio)
114
+ transcription = process_long_audio(audio, task="transcribe")
115
+ translation = process_long_audio(audio, task="translate", language=detected_lang)
116
+
117
+ return detected_lang, transcription, translation
118
+
119
+ # Gradio interface
120
+ iface = gr.Interface(
121
+ fn=process_audio,
122
+ inputs=gr.Audio(),
123
+ outputs=[
124
+ gr.Textbox(label="Detected Language"),
125
+ gr.Textbox(label="Transcription", lines=5),
126
+ gr.Textbox(label="Translation", lines=5)
127
+ ],
128
+ title="Audio Transcription and Translation",
129
+ description="Upload an audio file to detect its language, transcribe, and translate it.",
130
+ allow_flagging="never",
131
+ css=".output-textbox { font-family: 'Noto Sans Devanagari', sans-serif; font-size: 18px; }"
132
+ )
133
+
134
+ if __name__ == "__main__":
135
+ iface.launch()
config.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # Audio processing constants
2
+ SAMPLING_RATE = 16000
3
+ CHUNK_LENGTH_S = 20 # 20 seconds per chunk
4
+
5
+ # Model constants
6
+ WHISPER_MODEL_SIZE = "small"
7
+
8
+ # Other constants can be added here as needed
model_utils.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import WhisperProcessor, WhisperForConditionalGeneration
3
+ import whisper
4
+ from config import WHISPER_MODEL_SIZE
5
+
6
+ # Global variables to store models
7
+ whisper_processor = None
8
+ whisper_model = None
9
+ whisper_model_small = None
10
+
11
+ def load_models():
12
+ global whisper_processor, whisper_model, whisper_model_small
13
+ if whisper_processor is None:
14
+ whisper_processor = WhisperProcessor.from_pretrained(f"openai/whisper-{WHISPER_MODEL_SIZE}")
15
+ if whisper_model is None:
16
+ whisper_model = WhisperForConditionalGeneration.from_pretrained(f"openai/whisper-{WHISPER_MODEL_SIZE}").to(get_device())
17
+ if whisper_model_small is None:
18
+ whisper_model_small = whisper.load_model(WHISPER_MODEL_SIZE)
19
+
20
+ def get_device():
21
+ return "cuda:0" if torch.cuda.is_available() else "cpu"
22
+
23
+ def get_processor():
24
+ global whisper_processor
25
+ if whisper_processor is None:
26
+ load_models()
27
+ return whisper_processor
28
+
29
+ def get_model():
30
+ global whisper_model
31
+ if whisper_model is None:
32
+ load_models()
33
+ return whisper_model
34
+
35
+ def get_whisper_model_small():
36
+ global whisper_model_small
37
+ if whisper_model_small is None:
38
+ load_models()
39
+ return whisper_model_small