import whisperx import torch import numpy as np from scipy.signal import resample from pyannote.audio import Pipeline import os from dotenv import load_dotenv load_dotenv() import logging import time from difflib import SequenceMatcher import spaces hf_token = os.getenv("HF_TOKEN") CHUNK_LENGTH = 5 OVERLAP = 2 logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Global variables for models device = "cuda" if torch.cuda.is_available() else "cpu" compute_type = "float16" if device == "cuda" else "int8" whisper_model = None diarization_pipeline = None def load_models(model_size="small"): global whisper_model, diarization_pipeline, device, compute_type # Load Whisper model try: whisper_model = whisperx.load_model(model_size, device, compute_type=compute_type) except RuntimeError as e: logger.warning(f"Failed to load Whisper model on {device}. Falling back to CPU. Error: {str(e)}") device = "cpu" compute_type = "int8" whisper_model = whisperx.load_model(model_size, device, compute_type=compute_type) # Try to initialize diarization pipeline try: diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hf_token) if device == "cuda": diarization_pipeline = diarization_pipeline.to(torch.device(device)) except Exception as e: logger.warning(f"Diarization pipeline initialization failed: {str(e)}. Diarization will not be available.") diarization_pipeline = None def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000, overlap=OVERLAP*16000): chunks = [] for i in range(0, len(audio), chunk_size - overlap): chunk = audio[i:i+chunk_size] if len(chunk) < chunk_size: chunk = np.pad(chunk, (0, chunk_size - len(chunk))) chunks.append(chunk) return chunks @spaces.GPU def process_audio(audio_file, translate=False, model_size="small"): global whisper_model, diarization_pipeline if whisper_model is None: load_models(model_size) start_time = time.time() try: audio = whisperx.load_audio(audio_file) # Perform diarization if pipeline is available diarization_result = None if diarization_pipeline is not None: try: diarization_result = diarization_pipeline({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": 16000}) except Exception as e: logger.warning(f"Diarization failed: {str(e)}. Proceeding without diarization.") chunks = preprocess_audio(audio) language_segments = [] final_segments = [] overlap_duration = 2 # 2 seconds overlap for i, chunk in enumerate(chunks): chunk_start_time = i * (CHUNK_LENGTH - overlap_duration) chunk_end_time = chunk_start_time + CHUNK_LENGTH logger.info(f"Processing chunk {i+1}/{len(chunks)}") lang = whisper_model.detect_language(chunk) result_transcribe = whisper_model.transcribe(chunk, language=lang) if translate: result_translate = whisper_model.transcribe(chunk, task="translate") chunk_start_time = i * (CHUNK_LENGTH - overlap_duration) for j, t_seg in enumerate(result_transcribe["segments"]): segment_start = chunk_start_time + t_seg["start"] segment_end = chunk_start_time + t_seg["end"] # Skip segments in the overlapping region of the previous chunk if i > 0 and segment_end <= chunk_start_time + overlap_duration: print(f"Skipping segment in overlap with previous chunk: {segment_start:.2f} - {segment_end:.2f}") continue # Skip segments in the overlapping region of the next chunk if i < len(chunks) - 1 and segment_start >= chunk_end_time - overlap_duration: print(f"Skipping segment in overlap with next chunk: {segment_start:.2f} - {segment_end:.2f}") continue speaker = "Unknown" if diarization_result is not None: speakers = [] for turn, track, spk in diarization_result.itertracks(yield_label=True): if turn.start <= segment_end and turn.end >= segment_start: speakers.append(spk) speaker = max(set(speakers), key=speakers.count) if speakers else "Unknown" segment = { "start": segment_start, "end": segment_end, "language": lang, "speaker": speaker, "text": t_seg["text"], } if translate: segment["translated"] = result_translate["segments"][j]["text"] final_segments.append(segment) language_segments.append({ "language": lang, "start": chunk_start_time, "end": chunk_start_time + CHUNK_LENGTH }) chunk_end_time = time.time() logger.info(f"Chunk {i+1} processed in {chunk_end_time - chunk_start_time:.2f} seconds") final_segments.sort(key=lambda x: x["start"]) merged_segments = merge_nearby_segments(final_segments) end_time = time.time() logger.info(f"Total processing time: {end_time - start_time:.2f} seconds") return language_segments, merged_segments except Exception as e: logger.error(f"An error occurred during audio processing: {str(e)}") raise def merge_nearby_segments(segments, time_threshold=0.5, similarity_threshold=0.7): merged = [] for segment in segments: if not merged or segment['start'] - merged[-1]['end'] > time_threshold: merged.append(segment) else: # Find the overlap matcher = SequenceMatcher(None, merged[-1]['text'], segment['text']) match = matcher.find_longest_match(0, len(merged[-1]['text']), 0, len(segment['text'])) if match.size / len(segment['text']) > similarity_threshold: # Merge the segments merged_text = merged[-1]['text'] + segment['text'][match.b + match.size:] merged_translated = merged[-1].get('translated', '') + segment.get('translated', '')[match.b + match.size:] merged[-1]['end'] = segment['end'] merged[-1]['text'] = merged_text if 'translated' in segment: merged[-1]['translated'] = merged_translated else: # If no significant overlap, append as a new segment merged.append(segment) return merged