File size: 3,676 Bytes
1291143
f4ff201
1291143
 
3fec1fb
f4ff201
1291143
592103d
468aab2
90c02c2
f01e148
1291143
8b9b9de
0a882ab
f01e148
1780330
bacf257
1291143
8b9b9de
bf4b161
f4ff201
1291143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4ff201
3fec1fb
 
70e3d12
3fec1fb
 
 
 
70e3d12
3fec1fb
 
 
70e3d12
548031b
 
 
 
 
1291143
 
 
 
548031b
3fec1fb
 
 
 
0a14984
3fec1fb
5305898
70e3d12
 
548031b
70e3d12
548031b
 
3fec1fb
548031b
b00a80c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from diffusers import AutoencoderKL, StableDiffusionXLControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
import torch
from controlnet_aux import OpenposeDetector
from diffusers.utils import load_image
import gradio as gr

#sd1.5 bases
#model_base = "SG161222/Realistic_Vision_V5.1_noVAE" #fantasy people
#model_base = "Justin-Choo/epiCRealism-Natural_Sin_RC1_VAE" #cartoon people
#model_base = "Lykon/DreamShaper" #unrealistic people
#model_base = "runwayml/stable-diffusion-v1-5" #base
#model_base = "Krebzonide/LazyMixPlus" #nsfw people
#model_base = "Krebzonide/Humans" #boring people
#model_base = "aufahr/unofficial_aom3" #anime people

#lora_model_path = "Krebzonide/LoRA-CH-0" #mecjh - Corey H, traind on epiCRealism
#lora_model_path = "Krebzonide/LoRA-CH-1" #mecjh - Corey H, traind on epiCRealism
#lora_model_path = "Krebzonide/LoRA-EM1" #exgfem - Emily M, trained on LizyMixPlus
#lora_model_path = "Krebzonide/LoRA-EM-2-0" #exgfem - Emily M, trained on Humans
#lora_model_path = "Krebzonide/LoRA-YX1" #uwspyx - Professor Xing, trained on Realistic_Vision

#pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16, use_safetensors=True, use_auth_token="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")
#pipe.unet.load_attn_procs(lora_model_path, use_auth_token="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")
#pipe.to("cuda")


model_base = "stabilityai/stable-diffusion-xl-base-1.0"

openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")

#image is a random guy. openpose_image is the pose of that guy.
image = load_image(
    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/person.png"
)
openpose_image = openpose(image)

controlnet = ControlNetModel.from_pretrained("thibaud/controlnet-openpose-sdxl-1.0", torch_dtype=torch.float16)

pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    model_base, controlnet=controlnet, torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()

css = """
.btn-green {
  background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important;
  border-color: #22c55e !important;
  color: #166534 !important;
}
.btn-green:hover {
  background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important;
}
"""

def generate(prompt, neg_prompt, samp_steps, guide_scale, lora_scale, progress=gr.Progress(track_tqdm=True)):
    images = pipe(
        prompt,
        negative_prompt=neg_prompt,
        num_inference_steps=samp_steps,
        guidance_scale=guide_scale,
        #cross_attention_kwargs={"scale": lora_scale},
        num_images_per_prompt=4,
        #generator=torch.manual_seed(97),
        image=openpose_image.resize((1024, 1024)), #THIS IS THE OPENPOSE IMAGE
    ).images
    return [(img, f"Image {i+1}") for i, img in enumerate(images)]
        

with gr.Blocks(css=css) as demo:
    with gr.Column():
        prompt = gr.Textbox(label="Prompt")
        negative_prompt = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality, disfigured, deformed, extra limbs, asian, filter, render")
        submit_btn = gr.Button("Generate", elem_classes="btn-green")
        gallery = gr.Gallery(label="Generated images", height=700)
        with gr.Row():
            samp_steps = gr.Slider(1, 100, value=25, step=1, label="Sampling steps")
            guide_scale = gr.Slider(1, 10, value=6, step=0.5, label="Guidance scale")
            lora_scale = gr.Slider(0, 1, value=0.5, step=0.01, label="LoRA power")

    submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, lora_scale], [gallery], queue=True)

demo.queue(1)
demo.launch(debug=True)