|
from diffusers import StableDiffusionXLPipeline, AutoencoderKL |
|
import torch |
|
import random |
|
import os |
|
import gradio as gr |
|
|
|
hf_token = os.getenv("HF_TOKEN") |
|
model_id = int(os.getenv("Model")) |
|
nsfw_filter = int(os.getenv("Safe")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_url_list = ["stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors", |
|
"Krebzonide/Colossus_Project_XL/blob/main/colossusProjectXLSFW_v202BakedVAE.safetensors", |
|
"Krebzonide/AlbedoBaseXL_v11/blob/main/albedobaseXL_v11.safetensors", |
|
"Krebzonide/JuggernautXL_version5/blob/main/juggernautXL_v7Rundiffusion.safetensors", |
|
"SG161222/RealVisXL_V2.0/blob/main/RealVisXL_V2.0.safetensors", |
|
"Krebzonide/AcornIsSpinning_acornXLV1/blob/main/acornIsSpinning_acornxlV1.safetensors"] |
|
|
|
naughtyWords = ["nude", "nsfw", "naked", "porn", "boob", "tit", "nipple", "vagina", "pussy", "panties", "underwear", "upskirt", "bottomless", "topless", "petite", "xxx"] |
|
|
|
|
|
css = """ |
|
.btn-green { |
|
background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important; |
|
border-color: #22c55e !important; |
|
color: #166534 !important; |
|
} |
|
.btn-green:hover { |
|
background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important; |
|
} |
|
""" |
|
|
|
def generate(prompt, neg_prompt, samp_steps, cfg_scale, batch_size, seed, height, width, progress=gr.Progress(track_tqdm=True)): |
|
prompt = prompt.lower() |
|
if nsfw_filter: |
|
if prompt[:10] == "krebzonide": |
|
prompt = prompt[10:] |
|
else: |
|
neg_prompt = neg_prompt + ", child, nsfw, nipples, nude, underwear" |
|
for word in naughtyWords: |
|
if prompt.find(word) >= 0: |
|
return None, 58008 |
|
if seed < 0: |
|
seed = random.randint(1,999999) |
|
images = pipe( |
|
prompt, |
|
negative_prompt=neg_prompt, |
|
num_inference_steps=samp_steps, |
|
guidance_scale=cfg_scale, |
|
num_images_per_prompt=batch_size, |
|
height=height, |
|
width=width, |
|
generator=torch.manual_seed(seed), |
|
).images |
|
return [(img, f"Image {i+1}") for i, img in enumerate(images)], seed |
|
|
|
def set_base_model(base_model_id): |
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
global model_url_list |
|
model_url = "https://huggingface.co/" + model_url_list[base_model_id] |
|
pipe = StableDiffusionXLPipeline.from_single_file( |
|
model_url, |
|
torch_dtype = torch.float16, |
|
variant = "fp16", |
|
vae = vae, |
|
use_safetensors = True, |
|
use_auth_token=hf_token |
|
) |
|
pipe.to("cuda") |
|
pipe.enable_xformers_memory_efficient_attention() |
|
return pipe |
|
|
|
def update_pixel_ratio(num1, num2): |
|
return [round(num1*num2/1048576,3), num1-(num1%8)] |
|
|
|
examples = [ |
|
['A group of 4 students from University of Wisconsin Stout sitting at a table talking, men and women, detailed faces, focused', |
|
'glitch, deformed, cross-eyed'], |
|
['A serious capybara at work, wearing a suit', |
|
'low quality'], |
|
['a graffiti of a robot serving meals to people', |
|
'low quality'], |
|
['photo of a small cozy modern house in red woods on a mountain, solar panels, garage, driveway, great view, sunshine', |
|
'red house'], |
|
['cinematic photo of a woman sitting at a cafe, 35mm photograph, film, bokeh, professional, 4k, detailed face', |
|
'drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly'], |
|
['analog film photo of old woman on the streets of london, faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage', |
|
'painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured'] |
|
|
|
|
|
|
|
|
|
] |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(): |
|
prompt = gr.Textbox(label="Prompt") |
|
negative_prompt = gr.Textbox(label="Negative Prompt") |
|
submit_btn = gr.Button("Generate", elem_classes="btn-green") |
|
with gr.Row(): |
|
samp_steps = gr.Slider(1, 30, value=20, step=1, label="Sampling steps") |
|
cfg_scale = gr.Slider(1, 10, value=4, step=0.5, label="Guidance scale") |
|
batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size", interactive=False) |
|
with gr.Row(): |
|
height = gr.Slider(label="Height", value=1024, minimum=8, maximum=1536, step=8) |
|
width = gr.Slider(label="Width", value=1024, minimum=8, maximum=1024, step=8) |
|
with gr.Row(): |
|
pixels = gr.Number(label="Pixel Ratio", value=1, interactive=False) |
|
seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0) |
|
gallery = gr.Gallery(show_label=False, elem_id="gallery", allow_preview=False, container=False) |
|
with gr.Row(): |
|
lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False) |
|
ex = gr.Examples(examples=examples, inputs=[prompt, negative_prompt]) |
|
submit_btn.click(generate, [prompt, negative_prompt, samp_steps, cfg_scale, batch_size, seed, height, width], [gallery, lastSeed], queue=True) |
|
height.release(update_pixel_ratio, [height, width], [pixels, height], queue=False) |
|
width.release(update_pixel_ratio, [width, height], [pixels, width], queue=False) |
|
|
|
pipe = set_base_model(model_id) |
|
demo.launch(debug=True) |