Krebzonide
commited on
Commit
·
54ad393
1
Parent(s):
dd7a042
Removed control net because something didn’t work
Browse files
app.py
CHANGED
@@ -1,45 +1,15 @@
|
|
1 |
-
from diffusers import
|
2 |
import torch
|
3 |
-
from controlnet_aux import OpenposeDetector
|
4 |
-
from diffusers.utils import load_image
|
5 |
import gradio as gr
|
6 |
|
7 |
-
#sd1.5 bases
|
8 |
-
#model_base = "SG161222/Realistic_Vision_V5.1_noVAE" #fantasy people
|
9 |
-
#model_base = "Justin-Choo/epiCRealism-Natural_Sin_RC1_VAE" #cartoon people
|
10 |
-
#model_base = "Lykon/DreamShaper" #unrealistic people
|
11 |
-
#model_base = "runwayml/stable-diffusion-v1-5" #base
|
12 |
-
#model_base = "Krebzonide/LazyMixPlus" #nsfw people
|
13 |
-
#model_base = "Krebzonide/Humans" #boring people
|
14 |
-
#model_base = "aufahr/unofficial_aom3" #anime people
|
15 |
-
|
16 |
-
#lora_model_path = "Krebzonide/LoRA-CH-0" #mecjh - Corey H, traind on epiCRealism
|
17 |
-
#lora_model_path = "Krebzonide/LoRA-CH-1" #mecjh - Corey H, traind on epiCRealism
|
18 |
-
#lora_model_path = "Krebzonide/LoRA-EM1" #exgfem - Emily M, trained on LizyMixPlus
|
19 |
-
#lora_model_path = "Krebzonide/LoRA-EM-2-0" #exgfem - Emily M, trained on Humans
|
20 |
-
#lora_model_path = "Krebzonide/LoRA-YX1" #uwspyx - Professor Xing, trained on Realistic_Vision
|
21 |
-
|
22 |
-
#pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16, use_safetensors=True, use_auth_token="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")
|
23 |
-
#pipe.unet.load_attn_procs(lora_model_path, use_auth_token="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")
|
24 |
-
#pipe.to("cuda")
|
25 |
-
|
26 |
-
|
27 |
model_base = "stabilityai/stable-diffusion-xl-base-1.0"
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
#image is a random guy. openpose_image is the pose of that guy.
|
32 |
-
image = load_image(
|
33 |
-
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/person.png"
|
34 |
-
)
|
35 |
-
openpose_image = openpose(image)
|
36 |
-
|
37 |
-
controlnet = ControlNetModel.from_pretrained("thibaud/controlnet-openpose-sdxl-1.0", torch_dtype=torch.float16)
|
38 |
-
|
39 |
-
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
40 |
-
model_base, controlnet=controlnet, torch_dtype=torch.float16
|
41 |
)
|
42 |
-
pipe.
|
43 |
|
44 |
css = """
|
45 |
.btn-green {
|
@@ -61,7 +31,6 @@ def generate(prompt, neg_prompt, samp_steps, guide_scale, lora_scale, progress=g
|
|
61 |
#cross_attention_kwargs={"scale": lora_scale},
|
62 |
num_images_per_prompt=4,
|
63 |
#generator=torch.manual_seed(97),
|
64 |
-
image=openpose_image.resize((1024, 1024)), #THIS IS THE OPENPOSE IMAGE
|
65 |
).images
|
66 |
return [(img, f"Image {i+1}") for i, img in enumerate(images)]
|
67 |
|
@@ -71,7 +40,7 @@ with gr.Blocks(css=css) as demo:
|
|
71 |
prompt = gr.Textbox(label="Prompt")
|
72 |
negative_prompt = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality, disfigured, deformed, extra limbs, asian, filter, render")
|
73 |
submit_btn = gr.Button("Generate", elem_classes="btn-green")
|
74 |
-
gallery = gr.Gallery(label="Generated images", height=
|
75 |
with gr.Row():
|
76 |
samp_steps = gr.Slider(1, 100, value=25, step=1, label="Sampling steps")
|
77 |
guide_scale = gr.Slider(1, 10, value=6, step=0.5, label="Guidance scale")
|
|
|
1 |
+
from diffusers import StableDiffusionXLPipeline
|
2 |
import torch
|
3 |
+
#from controlnet_aux import OpenposeDetector
|
4 |
+
#from diffusers.utils import load_image
|
5 |
import gradio as gr
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
model_base = "stabilityai/stable-diffusion-xl-base-1.0"
|
8 |
|
9 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
10 |
+
model_base, torch_dtype=torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
)
|
12 |
+
pipe = pipe.to("cuda")
|
13 |
|
14 |
css = """
|
15 |
.btn-green {
|
|
|
31 |
#cross_attention_kwargs={"scale": lora_scale},
|
32 |
num_images_per_prompt=4,
|
33 |
#generator=torch.manual_seed(97),
|
|
|
34 |
).images
|
35 |
return [(img, f"Image {i+1}") for i, img in enumerate(images)]
|
36 |
|
|
|
40 |
prompt = gr.Textbox(label="Prompt")
|
41 |
negative_prompt = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality, disfigured, deformed, extra limbs, asian, filter, render")
|
42 |
submit_btn = gr.Button("Generate", elem_classes="btn-green")
|
43 |
+
gallery = gr.Gallery(label="Generated images", height=1100)
|
44 |
with gr.Row():
|
45 |
samp_steps = gr.Slider(1, 100, value=25, step=1, label="Sampling steps")
|
46 |
guide_scale = gr.Slider(1, 10, value=6, step=0.5, label="Guidance scale")
|