Krebzonide commited on
Commit
89bcb6a
·
1 Parent(s): ba9d526

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -11
app.py CHANGED
@@ -2,10 +2,7 @@ from diffusers import StableDiffusionXLPipeline, AutoencoderKL
2
  import torch
3
  import random
4
  import os
5
- #from controlnet_aux import OpenposeDetector
6
- #from diffusers.utils import load_image
7
  import gradio as gr
8
- import gc
9
 
10
  model_id = int(os.getenv("Model"))
11
 
@@ -44,15 +41,14 @@ css = """
44
  }
45
  """
46
 
47
- def generate(prompt, neg_prompt, samp_steps, guide_scale, batch_size, seed, height, width, progress=gr.Progress(track_tqdm=True)):
48
  if seed < 0:
49
  seed = random.randint(1,999999)
50
  images = pipe(
51
  prompt,
52
  negative_prompt=neg_prompt,
53
  num_inference_steps=samp_steps,
54
- guidance_scale=guide_scale,
55
- #cross_attention_kwargs={"scale": lora_scale},
56
  num_images_per_prompt=batch_size,
57
  height=height,
58
  width=width,
@@ -105,17 +101,17 @@ with gr.Blocks(css=css) as demo:
105
  submit_btn = gr.Button("Generate", elem_classes="btn-green")
106
  with gr.Row():
107
  samp_steps = gr.Slider(1, 50, value=20, step=1, label="Sampling steps")
108
- guide_scale = gr.Slider(1, 6, value=3, step=0.5, label="Guidance scale")
109
  batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size")
110
  with gr.Row():
111
- height = gr.Slider(label="Height", value=1024, minimum=1, maximum=4096, step=32)
112
- width = gr.Slider(label="Width", value=1024, minimum=1, maximum=4096, step=32)
113
  with gr.Row():
114
  pixels = gr.Number(label="Pixel Ratio", value=1, interactive=False)
115
  seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0)
116
- gallery = gr.Gallery(label="Generated images", height=800)
117
  ex = gr.Examples(examples=examples, inputs=[prompt, negative_prompt])
118
- submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, batch_size, seed, height, width], [gallery], queue=True)
119
  height.release(update_pixel_ratio, [height, width], [pixels, height], queue=False)
120
  width.release(update_pixel_ratio, [width, height], [pixels, width], queue=False)
121
 
 
2
  import torch
3
  import random
4
  import os
 
 
5
  import gradio as gr
 
6
 
7
  model_id = int(os.getenv("Model"))
8
 
 
41
  }
42
  """
43
 
44
+ def generate(prompt, neg_prompt, samp_steps, cfg_scale, batch_size, seed, height, width, progress=gr.Progress(track_tqdm=True)):
45
  if seed < 0:
46
  seed = random.randint(1,999999)
47
  images = pipe(
48
  prompt,
49
  negative_prompt=neg_prompt,
50
  num_inference_steps=samp_steps,
51
+ guidance_scale=cfg_scale,
 
52
  num_images_per_prompt=batch_size,
53
  height=height,
54
  width=width,
 
101
  submit_btn = gr.Button("Generate", elem_classes="btn-green")
102
  with gr.Row():
103
  samp_steps = gr.Slider(1, 50, value=20, step=1, label="Sampling steps")
104
+ cfg_scale = gr.Slider(1, 10, value=3, step=0.5, label="Guidance scale")
105
  batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size")
106
  with gr.Row():
107
+ height = gr.Slider(label="Height", value=1024, minimum=8, maximum=2560, step=8)
108
+ width = gr.Slider(label="Width", value=1024, minimum=8, maximum=2560, step=8)
109
  with gr.Row():
110
  pixels = gr.Number(label="Pixel Ratio", value=1, interactive=False)
111
  seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0)
112
+ gallery = gr.Gallery(label="Generated images")
113
  ex = gr.Examples(examples=examples, inputs=[prompt, negative_prompt])
114
+ submit_btn.click(generate, [prompt, negative_prompt, samp_steps, cfg_scale, batch_size, seed, height, width], [gallery], queue=True)
115
  height.release(update_pixel_ratio, [height, width], [pixels, height], queue=False)
116
  width.release(update_pixel_ratio, [width, height], [pixels, width], queue=False)
117