Krebzonide commited on
Commit
ae9efe4
·
1 Parent(s): 133a145

Added refiner

Browse files
Files changed (1) hide show
  1. app.py +24 -9
app.py CHANGED
@@ -1,4 +1,4 @@
1
- from diffusers import StableDiffusionXLPipeline, AutoencoderKL
2
  import torch
3
  import random
4
  #from controlnet_aux import OpenposeDetector
@@ -9,8 +9,8 @@ import gradio as gr
9
  model_base = "stabilityai/stable-diffusion-xl-base-1.0"
10
 
11
  #model_url = "https://huggingface.co/Krebzonide/Colossus_Project_XL/blob/main/colossusProjectXLSFW_v202BakedVAE.safetensors"
12
- #model_url = "https://huggingface.co/Krebzonide/Sevenof9_v3_sdxl/blob/main/nsfwSevenof9V3_nsfwSevenof9V3.safetensors"
13
- model_url = "https://civitai.com/api/download/models/182513?type=Model&format=SafeTensor&size=full&fp=fp16"
14
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
15
 
16
  #pipe = StableDiffusionXLPipeline.from_pretrained(
@@ -26,7 +26,15 @@ pipe = StableDiffusionXLPipeline.from_single_file(
26
  scheduler_type = "ddim",
27
  use_auth_token="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"
28
  )
29
- pipe = pipe.to("cuda")
 
 
 
 
 
 
 
 
30
 
31
  css = """
32
  .btn-green {
@@ -49,11 +57,18 @@ def generate(prompt, neg_prompt, samp_steps, guide_scale, batch_size, seed, heig
49
  guidance_scale=guide_scale,
50
  #cross_attention_kwargs={"scale": lora_scale},
51
  num_images_per_prompt=batch_size,
52
- height=height,
53
- width=width,
54
  generator=torch.manual_seed(seed),
55
  ).images
56
- return [(img, f"Image {i+1}") for i, img in enumerate(images)]
 
 
 
 
 
 
 
57
 
58
 
59
  with gr.Blocks(css=css) as demo:
@@ -67,8 +82,8 @@ with gr.Blocks(css=css) as demo:
67
  batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size")
68
  with gr.Row():
69
  seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=999999, step=1)
70
- height = gr.Slider(label="Height", value=1024, minumum=512, maximum=2048, step=8)
71
- width = gr.Slider(label="Width", value=1024, minumum=512, maximum=2048, step=8)
72
  gallery = gr.Gallery(label="Generated images", height=800)
73
 
74
  submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, batch_size, seed, height, width], [gallery], queue=True)
 
1
+ from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, AutoencoderKL
2
  import torch
3
  import random
4
  #from controlnet_aux import OpenposeDetector
 
9
  model_base = "stabilityai/stable-diffusion-xl-base-1.0"
10
 
11
  #model_url = "https://huggingface.co/Krebzonide/Colossus_Project_XL/blob/main/colossusProjectXLSFW_v202BakedVAE.safetensors"
12
+ model_url = "https://huggingface.co/Krebzonide/Sevenof9_v3_sdxl/blob/main/nsfwSevenof9V3_nsfwSevenof9V3.safetensors"
13
+
14
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
15
 
16
  #pipe = StableDiffusionXLPipeline.from_pretrained(
 
26
  scheduler_type = "ddim",
27
  use_auth_token="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"
28
  )
29
+ pipe.enable_model_cpu_offload()
30
+
31
+ pipeRefiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
32
+ "stabilityai/stable-diffusion-xl-refiner-1.0",
33
+ torch_dtype=torch.float16,
34
+ variant="fp16",
35
+ use_safetensors=True
36
+ )
37
+ pipeRefiner.enable_model_cpu_offload()
38
 
39
  css = """
40
  .btn-green {
 
57
  guidance_scale=guide_scale,
58
  #cross_attention_kwargs={"scale": lora_scale},
59
  num_images_per_prompt=batch_size,
60
+ height=height/2,
61
+ width=width/2,
62
  generator=torch.manual_seed(seed),
63
  ).images
64
+ imagesRefined = pipeRefiner(
65
+ prompt,
66
+ image=images,
67
+ num_inference_steps=5,
68
+ height=height,
69
+ width=width
70
+ ).images
71
+ return [(img, f"Image {i+1}") for i, img in enumerate(imagesRefined)]
72
 
73
 
74
  with gr.Blocks(css=css) as demo:
 
82
  batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size")
83
  with gr.Row():
84
  seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=999999, step=1)
85
+ height = gr.Slider(label="Height", value=1024, minimum=512, maximum=2048, step=16)
86
+ width = gr.Slider(label="Width", value=1024, minimum=512, maximum=2048, step=16)
87
  gallery = gr.Gallery(label="Generated images", height=800)
88
 
89
  submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, batch_size, seed, height, width], [gallery], queue=True)