from diffusers import StableDiffusionXLPipeline, AutoencoderKL import torch #from controlnet_aux import OpenposeDetector #from diffusers.utils import load_image import gradio as gr model_base = "stabilityai/stable-diffusion-xl-base-1.0" vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) #pipe = StableDiffusionXLPipeline.from_pretrained( # model_base, vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True #) pipe = StableDiffusionXLPipeline.from_single_file( "https://huggingface.co/Krebzonide/Colossus_Project_XL/blob/main/colossusProjectXLSFW_v202BakedVAE.safetensors", torch_dtype = torch.float16, variant = "fp16", vae = vae, use_safetensors = True, scheduler_type = "ddim" ) pipe = pipe.to("cuda") css = """ .btn-green { background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important; border-color: #22c55e !important; color: #166534 !important; } .btn-green:hover { background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important; } """ def generate(prompt, neg_prompt, samp_steps, guide_scale, lora_scale, progress=gr.Progress(track_tqdm=True)): images = pipe( prompt, negative_prompt=neg_prompt, num_inference_steps=samp_steps, guidance_scale=guide_scale, #cross_attention_kwargs={"scale": lora_scale}, num_images_per_prompt=1, #generator=torch.manual_seed(97), ).images return [(img, f"Image {i+1}") for i, img in enumerate(images)] with gr.Blocks(css=css) as demo: with gr.Column(): prompt = gr.Textbox(label="Prompt") negative_prompt = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality, disfigured, deformed, extra limbs, asian, filter, render") submit_btn = gr.Button("Generate", elem_classes="btn-green") gallery = gr.Gallery(label="Generated images", height=1100) with gr.Row(): samp_steps = gr.Slider(1, 100, value=25, step=1, label="Sampling steps") guide_scale = gr.Slider(1, 10, value=6, step=0.5, label="Guidance scale") lora_scale = gr.Slider(0, 1, value=0.5, step=0.01, label="LoRA power") submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, lora_scale], [gallery], queue=True) demo.queue(1) demo.launch(debug=True)