from diffusers import AutoencoderKL, StableDiffusionXLControlNetPipeline, ControlNetModel, UniPCMultistepScheduler import torch from controlnet_aux import OpenposeDetector from diffusers.utils import load_image import gradio as gr #sd1.5 bases #model_base = "SG161222/Realistic_Vision_V5.1_noVAE" #fantasy people #model_base = "Justin-Choo/epiCRealism-Natural_Sin_RC1_VAE" #cartoon people #model_base = "Lykon/DreamShaper" #unrealistic people #model_base = "runwayml/stable-diffusion-v1-5" #base #model_base = "Krebzonide/LazyMixPlus" #nsfw people #model_base = "Krebzonide/Humans" #boring people #model_base = "aufahr/unofficial_aom3" #anime people #lora_model_path = "Krebzonide/LoRA-CH-0" #mecjh - Corey H, traind on epiCRealism #lora_model_path = "Krebzonide/LoRA-CH-1" #mecjh - Corey H, traind on epiCRealism #lora_model_path = "Krebzonide/LoRA-EM1" #exgfem - Emily M, trained on LizyMixPlus #lora_model_path = "Krebzonide/LoRA-EM-2-0" #exgfem - Emily M, trained on Humans #lora_model_path = "Krebzonide/LoRA-YX1" #uwspyx - Professor Xing, trained on Realistic_Vision #pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16, use_safetensors=True, use_auth_token="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") #pipe.unet.load_attn_procs(lora_model_path, use_auth_token="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") #pipe.to("cuda") model_base = "stabilityai/stable-diffusion-xl-base-1.0" openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") #image is a random guy. openpose_image is the pose of that guy. image = load_image( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/person.png" ) openpose_image = openpose(image) controlnet = ControlNetModel.from_pretrained("thibaud/controlnet-openpose-sdxl-1.0", torch_dtype=torch.float16) pipe = StableDiffusionXLControlNetPipeline.from_pretrained( model_base, controlnet=controlnet, torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() css = """ .btn-green { background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important; border-color: #22c55e !important; color: #166534 !important; } .btn-green:hover { background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important; } """ def generate(prompt, neg_prompt, samp_steps, guide_scale, lora_scale, progress=gr.Progress(track_tqdm=True)): images = pipe( prompt, negative_prompt=neg_prompt, num_inference_steps=samp_steps, guidance_scale=guide_scale, #cross_attention_kwargs={"scale": lora_scale}, num_images_per_prompt=4, #generator=torch.manual_seed(97), image=openpose_image.resize((1024, 1024)), #THIS IS THE OPENPOSE IMAGE ).images return [(img, f"Image {i+1}") for i, img in enumerate(images)] with gr.Blocks(css=css) as demo: with gr.Column(): prompt = gr.Textbox(label="Prompt") negative_prompt = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality, disfigured, deformed, extra limbs, asian, filter, render") submit_btn = gr.Button("Generate", elem_classes="btn-green") gallery = gr.Gallery(label="Generated images", height=700) with gr.Row(): samp_steps = gr.Slider(1, 100, value=25, step=1, label="Sampling steps") guide_scale = gr.Slider(1, 10, value=6, step=0.5, label="Guidance scale") lora_scale = gr.Slider(0, 1, value=0.5, step=0.01, label="LoRA power") submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, lora_scale], [gallery], queue=True) demo.queue(1) demo.launch(debug=True)