from diffusers import StableDiffusionXLPipeline, AutoencoderKL import torch import random #from controlnet_aux import OpenposeDetector #from diffusers.utils import load_image import gradio as gr import gc model_id = os.getenv("Model") #stabilityai/stable-diffusion-xl-base-1.0 0 - base model #Colossus_Project_XL 1 - better people #Sevenof9_v3_sdxl 2 - nude women model_url_list = ["stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors", "Krebzonide/Colossus_Project_XL/blob/main/colossusProjectXLSFW_v202BakedVAE.safetensors", "Krebzonide/Sevenof9_v3_sdxl/blob/main/nsfwSevenof9V3_nsfwSevenof9V3.safetensors"] css = """ .btn-green { background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important; border-color: #22c55e !important; color: #166534 !important; } .btn-green:hover { background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important; } """ def generate(prompt, neg_prompt, samp_steps, guide_scale, batch_size, seed, height, width, progress=gr.Progress(track_tqdm=True)): if seed < 0: seed = random.randint(1,999999) images = pipe( prompt, negative_prompt=neg_prompt, num_inference_steps=samp_steps, guidance_scale=guide_scale, #cross_attention_kwargs={"scale": lora_scale}, num_images_per_prompt=batch_size, height=height, width=width, generator=torch.manual_seed(seed), ).images return [(img, f"Image {i+1}") for i, img in enumerate(images)] def set_base_model(base_model_id): vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) global model_url_list model_url = "https://huggingface.co/" + model_url_list[base_model_id] pipe = StableDiffusionXLPipeline.from_single_file( model_url, torch_dtype = torch.float16, variant = "fp16", vae = vae, use_safetensors = True, use_auth_token="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" ) pipe.to("cuda") return pipe with gr.Blocks(css=css) as demo: with gr.Column(): prompt = gr.Textbox(label="Prompt") negative_prompt = gr.Textbox(label="Negative Prompt") submit_btn = gr.Button("Generate", elem_classes="btn-green") with gr.Row(): samp_steps = gr.Slider(1, 50, value=20, step=1, label="Sampling steps") guide_scale = gr.Slider(1, 6, value=3, step=0.5, label="Guidance scale") batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size") with gr.Row(): seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=999999, step=1) height = gr.Slider(label="Height", value=1024, minimum=512, maximum=2048, step=16) width = gr.Slider(label="Width", value=1024, minimum=512, maximum=2048, step=16) gallery = gr.Gallery(label="Generated images", height=800) submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, batch_size, seed, height, width], [gallery], queue=True) pipe = set_base_model(model_id) demo.launch(debug=True)