from diffusers import StableDiffusionXLPipeline, AutoencoderKL import torch import random import os #from controlnet_aux import OpenposeDetector #from diffusers.utils import load_image import gradio as gr import gc model_id = int(os.getenv("Model")) #stable-diffusion-xl-base-1.0 0 - base model #Colossus_Project_XL 1 - better people #Sevenof9_v3_sdxl 2 - nsfw #JuggernautXL_version5 3 - better faces #RealVisXL_V2.0 4 - realistic #AlbedoBaseXL_v11 5 - realistic #BetterThanWords_v20_sdxl 6 - nsfw #AcornIsSpinning_acornXLV1 7 - nsfw #PyrosNSFWSDXL_v04. 8 - nsfw #AltXL_v60 9 - realistic #SDXXXL_v10 10 - nsfw model_url_list = ["stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors", "Krebzonide/Colossus_Project_XL/blob/main/colossusProjectXLSFW_v202BakedVAE.safetensors", "Krebzonide/Sevenof9_v3_sdxl/blob/main/nsfwSevenof9V3_nsfwSevenof9V3.safetensors", "Krebzonide/JuggernautXL_version5/blob/main/juggernautXL_version5.safetensors", "SG161222/RealVisXL_V2.0/blob/main/RealVisXL_V2.0.safetensors", "Krebzonide/AlbedoBaseXL_v11/blob/main/albedobaseXL_v11.safetensors", "Krebzonide/BetterThanWords_v20_sdxl/blob/main/betterThanWords_v20.safetensors", "Krebzonide/AcornIsSpinning_acornXLV1/blob/main/acornIsSpinning_acornxlV1.safetensors", "Krebzonide/PyrosNSFWSDXL_v04/blob/main/pyrosNSFWSDXL_v04.safetensors", "Krebzonide/AltXL_v60/blob/main/altxl_v60.safetensors", "Krebzonide/SDXXXL_v10/blob/main/sdxxxl_v10.safetensors"] css = """ .btn-green { background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important; border-color: #22c55e !important; color: #166534 !important; } .btn-green:hover { background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important; } """ def generate(prompt, neg_prompt, samp_steps, guide_scale, batch_size, seed, height, width, progress=gr.Progress(track_tqdm=True)): if seed < 0: seed = random.randint(1,999999) images = pipe( prompt, negative_prompt=neg_prompt, num_inference_steps=samp_steps, guidance_scale=guide_scale, #cross_attention_kwargs={"scale": lora_scale}, num_images_per_prompt=batch_size, height=height, width=width, generator=torch.manual_seed(seed), ).images return [(img, f"Image {i+1}") for i, img in enumerate(images)] def set_base_model(base_model_id): vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) global model_url_list model_url = "https://huggingface.co/" + model_url_list[base_model_id] pipe = StableDiffusionXLPipeline.from_single_file( model_url, torch_dtype = torch.float16, variant = "fp16", vae = vae, use_safetensors = True, use_auth_token="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" ) pipe.to("cuda") return pipe def update_pixel_ratio(num1, num2): return [round(num1*num2/1048576,3), num1-(num1%8)] def round_to_8(num): return examples = [ ['A serious capybara at work, wearing a suit', 'low quality'], ['a graffiti of a robot serving meals to people', 'low quality'], ['photo of a small cozy modern house in red woods on a mountain, solar panels, garage, driveway, great view, sunshine', 'red house'], ['cinematic photo of a woman sitting at a cafe, 35mm photograph, film, bokeh, professional, 4k, highly detailede', 'drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly'], ['analog film photo of old woman on the streets of london, faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage', 'painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured'], ['nude photo of a 20 year old model in the back seat of a car, detailed face', 'big boobs'], ['nude photo of a 20 year old man, penis and testicles, dick and balls, erection', 'woman'] ] with gr.Blocks(css=css) as demo: with gr.Column(): prompt = gr.Textbox(label="Prompt") negative_prompt = gr.Textbox(label="Negative Prompt") submit_btn = gr.Button("Generate", elem_classes="btn-green") with gr.Row(): samp_steps = gr.Slider(1, 50, value=20, step=1, label="Sampling steps") guide_scale = gr.Slider(1, 6, value=3, step=0.5, label="Guidance scale") batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size") with gr.Row(): height = gr.Slider(label="Height", value=1024, minimum=1, maximum=4096, step=32) width = gr.Slider(label="Width", value=1024, minimum=1, maximum=4096, step=32) with gr.Row(): pixels = gr.Number(label="Pixel Ratio", value=1, interactive=False) seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0) gallery = gr.Gallery(label="Generated images", height=800) ex = gr.Examples(examples=examples, inputs=[prompt, negative_prompt]) submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, batch_size, seed, height, width], [gallery], queue=True) height.release(update_pixel_ratio, [height, width], [pixels, height], queue=False) width.release(update_pixel_ratio, [width, height], [pixels, width], queue=False) pipe = set_base_model(model_id) demo.launch(debug=True)