Spaces:
Running
Running
Delete utils
Browse files- utils/__init__.py +0 -0
- utils/argutils.py +0 -40
- utils/default_models.py +0 -56
- utils/logmmse.py +0 -247
- utils/profiler.py +0 -45
utils/__init__.py
DELETED
File without changes
|
utils/argutils.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
from pathlib import Path
|
2 |
-
import numpy as np
|
3 |
-
import argparse
|
4 |
-
|
5 |
-
_type_priorities = [ # In decreasing order
|
6 |
-
Path,
|
7 |
-
str,
|
8 |
-
int,
|
9 |
-
float,
|
10 |
-
bool,
|
11 |
-
]
|
12 |
-
|
13 |
-
def _priority(o):
|
14 |
-
p = next((i for i, t in enumerate(_type_priorities) if type(o) is t), None)
|
15 |
-
if p is not None:
|
16 |
-
return p
|
17 |
-
p = next((i for i, t in enumerate(_type_priorities) if isinstance(o, t)), None)
|
18 |
-
if p is not None:
|
19 |
-
return p
|
20 |
-
return len(_type_priorities)
|
21 |
-
|
22 |
-
def print_args(args: argparse.Namespace, parser=None):
|
23 |
-
args = vars(args)
|
24 |
-
if parser is None:
|
25 |
-
priorities = list(map(_priority, args.values()))
|
26 |
-
else:
|
27 |
-
all_params = [a.dest for g in parser._action_groups for a in g._group_actions ]
|
28 |
-
priority = lambda p: all_params.index(p) if p in all_params else len(all_params)
|
29 |
-
priorities = list(map(priority, args.keys()))
|
30 |
-
|
31 |
-
pad = max(map(len, args.keys())) + 3
|
32 |
-
indices = np.lexsort((list(args.keys()), priorities))
|
33 |
-
items = list(args.items())
|
34 |
-
|
35 |
-
print("Arguments:")
|
36 |
-
for i in indices:
|
37 |
-
param, value = items[i]
|
38 |
-
print(" {0}:{1}{2}".format(param, ' ' * (pad - len(param)), value))
|
39 |
-
print("")
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/default_models.py
DELETED
@@ -1,56 +0,0 @@
|
|
1 |
-
import urllib.request
|
2 |
-
from pathlib import Path
|
3 |
-
from threading import Thread
|
4 |
-
from urllib.error import HTTPError
|
5 |
-
|
6 |
-
from tqdm import tqdm
|
7 |
-
|
8 |
-
|
9 |
-
default_models = {
|
10 |
-
"encoder": ("https://drive.google.com/uc?export=download&id=1q8mEGwCkFy23KZsinbuvdKAQLqNKbYf1", 17090379),
|
11 |
-
"synthesizer": ("https://drive.google.com/u/0/uc?id=1EqFMIbvxffxtjiVrtykroF6_mUh-5Z3s&export=download&confirm=t", 370554559),
|
12 |
-
"vocoder": ("https://drive.google.com/uc?export=download&id=1cf2NO6FtI0jDuy8AV3Xgn6leO6dHjIgu", 53845290),
|
13 |
-
}
|
14 |
-
|
15 |
-
|
16 |
-
class DownloadProgressBar(tqdm):
|
17 |
-
def update_to(self, b=1, bsize=1, tsize=None):
|
18 |
-
if tsize is not None:
|
19 |
-
self.total = tsize
|
20 |
-
self.update(b * bsize - self.n)
|
21 |
-
|
22 |
-
|
23 |
-
def download(url: str, target: Path, bar_pos=0):
|
24 |
-
# Ensure the directory exists
|
25 |
-
target.parent.mkdir(exist_ok=True, parents=True)
|
26 |
-
|
27 |
-
desc = f"Downloading {target.name}"
|
28 |
-
with DownloadProgressBar(unit="B", unit_scale=True, miniters=1, desc=desc, position=bar_pos, leave=False) as t:
|
29 |
-
try:
|
30 |
-
urllib.request.urlretrieve(url, filename=target, reporthook=t.update_to)
|
31 |
-
except HTTPError:
|
32 |
-
return
|
33 |
-
|
34 |
-
|
35 |
-
def ensure_default_models(models_dir: Path):
|
36 |
-
# Define download tasks
|
37 |
-
jobs = []
|
38 |
-
for model_name, (url, size) in default_models.items():
|
39 |
-
target_path = models_dir / "default" / f"{model_name}.pt"
|
40 |
-
if target_path.exists():
|
41 |
-
if target_path.stat().st_size != size:
|
42 |
-
print(f"File {target_path} is not of expected size, redownloading...")
|
43 |
-
else:
|
44 |
-
continue
|
45 |
-
|
46 |
-
thread = Thread(target=download, args=(url, target_path, len(jobs)))
|
47 |
-
thread.start()
|
48 |
-
jobs.append((thread, target_path, size))
|
49 |
-
|
50 |
-
# Run and join threads
|
51 |
-
for thread, target_path, size in jobs:
|
52 |
-
thread.join()
|
53 |
-
|
54 |
-
assert target_path.exists() and target_path.stat().st_size == size, \
|
55 |
-
f"Download for {target_path.name} failed. You may download models manually instead.\n" \
|
56 |
-
f"https://drive.google.com/drive/folders/1fU6umc5uQAVR2udZdHX-lDgXYzTyqG_j"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/logmmse.py
DELETED
@@ -1,247 +0,0 @@
|
|
1 |
-
# The MIT License (MIT)
|
2 |
-
#
|
3 |
-
# Copyright (c) 2015 braindead
|
4 |
-
#
|
5 |
-
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
-
# of this software and associated documentation files (the "Software"), to deal
|
7 |
-
# in the Software without restriction, including without limitation the rights
|
8 |
-
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
-
# copies of the Software, and to permit persons to whom the Software is
|
10 |
-
# furnished to do so, subject to the following conditions:
|
11 |
-
#
|
12 |
-
# The above copyright notice and this permission notice shall be included in all
|
13 |
-
# copies or substantial portions of the Software.
|
14 |
-
#
|
15 |
-
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
-
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
-
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
-
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
-
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
-
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
-
# SOFTWARE.
|
22 |
-
#
|
23 |
-
#
|
24 |
-
# This code was extracted from the logmmse package (https://pypi.org/project/logmmse/) and I
|
25 |
-
# simply modified the interface to meet my needs.
|
26 |
-
|
27 |
-
|
28 |
-
import numpy as np
|
29 |
-
import math
|
30 |
-
from scipy.special import expn
|
31 |
-
from collections import namedtuple
|
32 |
-
|
33 |
-
NoiseProfile = namedtuple("NoiseProfile", "sampling_rate window_size len1 len2 win n_fft noise_mu2")
|
34 |
-
|
35 |
-
|
36 |
-
def profile_noise(noise, sampling_rate, window_size=0):
|
37 |
-
"""
|
38 |
-
Creates a profile of the noise in a given waveform.
|
39 |
-
|
40 |
-
:param noise: a waveform containing noise ONLY, as a numpy array of floats or ints.
|
41 |
-
:param sampling_rate: the sampling rate of the audio
|
42 |
-
:param window_size: the size of the window the logmmse algorithm operates on. A default value
|
43 |
-
will be picked if left as 0.
|
44 |
-
:return: a NoiseProfile object
|
45 |
-
"""
|
46 |
-
noise, dtype = to_float(noise)
|
47 |
-
noise += np.finfo(np.float64).eps
|
48 |
-
|
49 |
-
if window_size == 0:
|
50 |
-
window_size = int(math.floor(0.02 * sampling_rate))
|
51 |
-
|
52 |
-
if window_size % 2 == 1:
|
53 |
-
window_size = window_size + 1
|
54 |
-
|
55 |
-
perc = 50
|
56 |
-
len1 = int(math.floor(window_size * perc / 100))
|
57 |
-
len2 = int(window_size - len1)
|
58 |
-
|
59 |
-
win = np.hanning(window_size)
|
60 |
-
win = win * len2 / np.sum(win)
|
61 |
-
n_fft = 2 * window_size
|
62 |
-
|
63 |
-
noise_mean = np.zeros(n_fft)
|
64 |
-
n_frames = len(noise) // window_size
|
65 |
-
for j in range(0, window_size * n_frames, window_size):
|
66 |
-
noise_mean += np.absolute(np.fft.fft(win * noise[j:j + window_size], n_fft, axis=0))
|
67 |
-
noise_mu2 = (noise_mean / n_frames) ** 2
|
68 |
-
|
69 |
-
return NoiseProfile(sampling_rate, window_size, len1, len2, win, n_fft, noise_mu2)
|
70 |
-
|
71 |
-
|
72 |
-
def denoise(wav, noise_profile: NoiseProfile, eta=0.15):
|
73 |
-
"""
|
74 |
-
Cleans the noise from a speech waveform given a noise profile. The waveform must have the
|
75 |
-
same sampling rate as the one used to create the noise profile.
|
76 |
-
|
77 |
-
:param wav: a speech waveform as a numpy array of floats or ints.
|
78 |
-
:param noise_profile: a NoiseProfile object that was created from a similar (or a segment of
|
79 |
-
the same) waveform.
|
80 |
-
:param eta: voice threshold for noise update. While the voice activation detection value is
|
81 |
-
below this threshold, the noise profile will be continuously updated throughout the audio.
|
82 |
-
Set to 0 to disable updating the noise profile.
|
83 |
-
:return: the clean wav as a numpy array of floats or ints of the same length.
|
84 |
-
"""
|
85 |
-
wav, dtype = to_float(wav)
|
86 |
-
wav += np.finfo(np.float64).eps
|
87 |
-
p = noise_profile
|
88 |
-
|
89 |
-
nframes = int(math.floor(len(wav) / p.len2) - math.floor(p.window_size / p.len2))
|
90 |
-
x_final = np.zeros(nframes * p.len2)
|
91 |
-
|
92 |
-
aa = 0.98
|
93 |
-
mu = 0.98
|
94 |
-
ksi_min = 10 ** (-25 / 10)
|
95 |
-
|
96 |
-
x_old = np.zeros(p.len1)
|
97 |
-
xk_prev = np.zeros(p.len1)
|
98 |
-
noise_mu2 = p.noise_mu2
|
99 |
-
for k in range(0, nframes * p.len2, p.len2):
|
100 |
-
insign = p.win * wav[k:k + p.window_size]
|
101 |
-
|
102 |
-
spec = np.fft.fft(insign, p.n_fft, axis=0)
|
103 |
-
sig = np.absolute(spec)
|
104 |
-
sig2 = sig ** 2
|
105 |
-
|
106 |
-
gammak = np.minimum(sig2 / noise_mu2, 40)
|
107 |
-
|
108 |
-
if xk_prev.all() == 0:
|
109 |
-
ksi = aa + (1 - aa) * np.maximum(gammak - 1, 0)
|
110 |
-
else:
|
111 |
-
ksi = aa * xk_prev / noise_mu2 + (1 - aa) * np.maximum(gammak - 1, 0)
|
112 |
-
ksi = np.maximum(ksi_min, ksi)
|
113 |
-
|
114 |
-
log_sigma_k = gammak * ksi/(1 + ksi) - np.log(1 + ksi)
|
115 |
-
vad_decision = np.sum(log_sigma_k) / p.window_size
|
116 |
-
if vad_decision < eta:
|
117 |
-
noise_mu2 = mu * noise_mu2 + (1 - mu) * sig2
|
118 |
-
|
119 |
-
a = ksi / (1 + ksi)
|
120 |
-
vk = a * gammak
|
121 |
-
ei_vk = 0.5 * expn(1, np.maximum(vk, 1e-8))
|
122 |
-
hw = a * np.exp(ei_vk)
|
123 |
-
sig = sig * hw
|
124 |
-
xk_prev = sig ** 2
|
125 |
-
xi_w = np.fft.ifft(hw * spec, p.n_fft, axis=0)
|
126 |
-
xi_w = np.real(xi_w)
|
127 |
-
|
128 |
-
x_final[k:k + p.len2] = x_old + xi_w[0:p.len1]
|
129 |
-
x_old = xi_w[p.len1:p.window_size]
|
130 |
-
|
131 |
-
output = from_float(x_final, dtype)
|
132 |
-
output = np.pad(output, (0, len(wav) - len(output)), mode="constant")
|
133 |
-
return output
|
134 |
-
|
135 |
-
|
136 |
-
## Alternative VAD algorithm to webrctvad. It has the advantage of not requiring to install that
|
137 |
-
## darn package and it also works for any sampling rate. Maybe I'll eventually use it instead of
|
138 |
-
## webrctvad
|
139 |
-
# def vad(wav, sampling_rate, eta=0.15, window_size=0):
|
140 |
-
# """
|
141 |
-
# TODO: fix doc
|
142 |
-
# Creates a profile of the noise in a given waveform.
|
143 |
-
#
|
144 |
-
# :param wav: a waveform containing noise ONLY, as a numpy array of floats or ints.
|
145 |
-
# :param sampling_rate: the sampling rate of the audio
|
146 |
-
# :param window_size: the size of the window the logmmse algorithm operates on. A default value
|
147 |
-
# will be picked if left as 0.
|
148 |
-
# :param eta: voice threshold for noise update. While the voice activation detection value is
|
149 |
-
# below this threshold, the noise profile will be continuously updated throughout the audio.
|
150 |
-
# Set to 0 to disable updating the noise profile.
|
151 |
-
# """
|
152 |
-
# wav, dtype = to_float(wav)
|
153 |
-
# wav += np.finfo(np.float64).eps
|
154 |
-
#
|
155 |
-
# if window_size == 0:
|
156 |
-
# window_size = int(math.floor(0.02 * sampling_rate))
|
157 |
-
#
|
158 |
-
# if window_size % 2 == 1:
|
159 |
-
# window_size = window_size + 1
|
160 |
-
#
|
161 |
-
# perc = 50
|
162 |
-
# len1 = int(math.floor(window_size * perc / 100))
|
163 |
-
# len2 = int(window_size - len1)
|
164 |
-
#
|
165 |
-
# win = np.hanning(window_size)
|
166 |
-
# win = win * len2 / np.sum(win)
|
167 |
-
# n_fft = 2 * window_size
|
168 |
-
#
|
169 |
-
# wav_mean = np.zeros(n_fft)
|
170 |
-
# n_frames = len(wav) // window_size
|
171 |
-
# for j in range(0, window_size * n_frames, window_size):
|
172 |
-
# wav_mean += np.absolute(np.fft.fft(win * wav[j:j + window_size], n_fft, axis=0))
|
173 |
-
# noise_mu2 = (wav_mean / n_frames) ** 2
|
174 |
-
#
|
175 |
-
# wav, dtype = to_float(wav)
|
176 |
-
# wav += np.finfo(np.float64).eps
|
177 |
-
#
|
178 |
-
# nframes = int(math.floor(len(wav) / len2) - math.floor(window_size / len2))
|
179 |
-
# vad = np.zeros(nframes * len2, dtype=np.bool)
|
180 |
-
#
|
181 |
-
# aa = 0.98
|
182 |
-
# mu = 0.98
|
183 |
-
# ksi_min = 10 ** (-25 / 10)
|
184 |
-
#
|
185 |
-
# xk_prev = np.zeros(len1)
|
186 |
-
# noise_mu2 = noise_mu2
|
187 |
-
# for k in range(0, nframes * len2, len2):
|
188 |
-
# insign = win * wav[k:k + window_size]
|
189 |
-
#
|
190 |
-
# spec = np.fft.fft(insign, n_fft, axis=0)
|
191 |
-
# sig = np.absolute(spec)
|
192 |
-
# sig2 = sig ** 2
|
193 |
-
#
|
194 |
-
# gammak = np.minimum(sig2 / noise_mu2, 40)
|
195 |
-
#
|
196 |
-
# if xk_prev.all() == 0:
|
197 |
-
# ksi = aa + (1 - aa) * np.maximum(gammak - 1, 0)
|
198 |
-
# else:
|
199 |
-
# ksi = aa * xk_prev / noise_mu2 + (1 - aa) * np.maximum(gammak - 1, 0)
|
200 |
-
# ksi = np.maximum(ksi_min, ksi)
|
201 |
-
#
|
202 |
-
# log_sigma_k = gammak * ksi / (1 + ksi) - np.log(1 + ksi)
|
203 |
-
# vad_decision = np.sum(log_sigma_k) / window_size
|
204 |
-
# if vad_decision < eta:
|
205 |
-
# noise_mu2 = mu * noise_mu2 + (1 - mu) * sig2
|
206 |
-
# print(vad_decision)
|
207 |
-
#
|
208 |
-
# a = ksi / (1 + ksi)
|
209 |
-
# vk = a * gammak
|
210 |
-
# ei_vk = 0.5 * expn(1, np.maximum(vk, 1e-8))
|
211 |
-
# hw = a * np.exp(ei_vk)
|
212 |
-
# sig = sig * hw
|
213 |
-
# xk_prev = sig ** 2
|
214 |
-
#
|
215 |
-
# vad[k:k + len2] = vad_decision >= eta
|
216 |
-
#
|
217 |
-
# vad = np.pad(vad, (0, len(wav) - len(vad)), mode="constant")
|
218 |
-
# return vad
|
219 |
-
|
220 |
-
|
221 |
-
def to_float(_input):
|
222 |
-
if _input.dtype == np.float64:
|
223 |
-
return _input, _input.dtype
|
224 |
-
elif _input.dtype == np.float32:
|
225 |
-
return _input.astype(np.float64), _input.dtype
|
226 |
-
elif _input.dtype == np.uint8:
|
227 |
-
return (_input - 128) / 128., _input.dtype
|
228 |
-
elif _input.dtype == np.int16:
|
229 |
-
return _input / 32768., _input.dtype
|
230 |
-
elif _input.dtype == np.int32:
|
231 |
-
return _input / 2147483648., _input.dtype
|
232 |
-
raise ValueError('Unsupported wave file format')
|
233 |
-
|
234 |
-
|
235 |
-
def from_float(_input, dtype):
|
236 |
-
if dtype == np.float64:
|
237 |
-
return _input, np.float64
|
238 |
-
elif dtype == np.float32:
|
239 |
-
return _input.astype(np.float32)
|
240 |
-
elif dtype == np.uint8:
|
241 |
-
return ((_input * 128) + 128).astype(np.uint8)
|
242 |
-
elif dtype == np.int16:
|
243 |
-
return (_input * 32768).astype(np.int16)
|
244 |
-
elif dtype == np.int32:
|
245 |
-
print(_input)
|
246 |
-
return (_input * 2147483648).astype(np.int32)
|
247 |
-
raise ValueError('Unsupported wave file format')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/profiler.py
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
from time import perf_counter as timer
|
2 |
-
from collections import OrderedDict
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
|
6 |
-
class Profiler:
|
7 |
-
def __init__(self, summarize_every=5, disabled=False):
|
8 |
-
self.last_tick = timer()
|
9 |
-
self.logs = OrderedDict()
|
10 |
-
self.summarize_every = summarize_every
|
11 |
-
self.disabled = disabled
|
12 |
-
|
13 |
-
def tick(self, name):
|
14 |
-
if self.disabled:
|
15 |
-
return
|
16 |
-
|
17 |
-
# Log the time needed to execute that function
|
18 |
-
if not name in self.logs:
|
19 |
-
self.logs[name] = []
|
20 |
-
if len(self.logs[name]) >= self.summarize_every:
|
21 |
-
self.summarize()
|
22 |
-
self.purge_logs()
|
23 |
-
self.logs[name].append(timer() - self.last_tick)
|
24 |
-
|
25 |
-
self.reset_timer()
|
26 |
-
|
27 |
-
def purge_logs(self):
|
28 |
-
for name in self.logs:
|
29 |
-
self.logs[name].clear()
|
30 |
-
|
31 |
-
def reset_timer(self):
|
32 |
-
self.last_tick = timer()
|
33 |
-
|
34 |
-
def summarize(self):
|
35 |
-
n = max(map(len, self.logs.values()))
|
36 |
-
assert n == self.summarize_every
|
37 |
-
print("\nAverage execution time over %d steps:" % n)
|
38 |
-
|
39 |
-
name_msgs = ["%s (%d/%d):" % (name, len(deltas), n) for name, deltas in self.logs.items()]
|
40 |
-
pad = max(map(len, name_msgs))
|
41 |
-
for name_msg, deltas in zip(name_msgs, self.logs.values()):
|
42 |
-
print(" %s mean: %4.0fms std: %4.0fms" %
|
43 |
-
(name_msg.ljust(pad), np.mean(deltas) * 1000, np.std(deltas) * 1000))
|
44 |
-
print("", flush=True)
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|