import os import gradio as gr import spaces from infer_rvc_python import BaseLoader import random import logging import time import soundfile as sf from infer_rvc_python.main import download_manager import zipfile import edge_tts import asyncio import librosa import traceback import soundfile as sf from pedalboard import Pedalboard, Reverb, Compressor, HighpassFilter from pedalboard.io import AudioFile from pydub import AudioSegment import noisereduce as nr import numpy as np import urllib.request import shutil import threading logging.getLogger("infer_rvc_python").setLevel(logging.ERROR) converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None) theme = "aliabid94/new-theme" PITCH_ALGO_OPT = [ "pm", "harvest", "crepe", "rmvpe", "rmvpe+", ] def find_files(directory): file_paths = [] for filename in os.listdir(directory): # Check if the file has the desired extension if filename.endswith('.pth') or filename.endswith('.zip') or filename.endswith('.index'): # If yes, add the file path to the list file_paths.append(os.path.join(directory, filename)) return file_paths def unzip_in_folder(my_zip, my_dir): with zipfile.ZipFile(my_zip) as zip: for zip_info in zip.infolist(): if zip_info.is_dir(): continue zip_info.filename = os.path.basename(zip_info.filename) zip.extract(zip_info, my_dir) def find_my_model(a_, b_): if a_ is None or a_.endswith(".pth"): return a_, b_ txt_files = [] for base_file in [a_, b_]: if base_file is not None and base_file.endswith(".txt"): txt_files.append(base_file) directory = os.path.dirname(a_) for txt in txt_files: with open(txt, 'r') as file: first_line = file.readline() download_manager( url=first_line.strip(), path=directory, extension="", ) for f in find_files(directory): if f.endswith(".zip"): unzip_in_folder(f, directory) model = None index = None end_files = find_files(directory) for ff in end_files: if ff.endswith(".pth"): model = os.path.join(directory, ff) gr.Info(f"Model found: {ff}") if ff.endswith(".index"): index = os.path.join(directory, ff) gr.Info(f"Index found: {ff}") if not model: gr.Error(f"Model not found in: {end_files}") if not index: gr.Warning("Index not found") return model, index def get_file_size(url): if "huggingface" not in url: raise ValueError("Only downloads from Hugging Face are allowed") try: with urllib.request.urlopen(url) as response: info = response.info() content_length = info.get("Content-Length") file_size = int(content_length) if file_size > 500000000: raise ValueError("The file is too large. You can only download files up to 500 MB in size.") except Exception as e: raise e def clear_files(directory): time.sleep(15) print(f"Clearing files: {directory}.") shutil.rmtree(directory) def get_my_model(url_data): if not url_data: return None, None if "," in url_data: a_, b_ = url_data.split() a_, b_ = a_.strip().replace("/blob/", "/resolve/"), b_.strip().replace("/blob/", "/resolve/") else: a_, b_ = url_data.strip().replace("/blob/", "/resolve/"), None out_dir = "downloads" folder_download = str(random.randint(1000, 9999)) directory = os.path.join(out_dir, folder_download) os.makedirs(directory, exist_ok=True) try: get_file_size(a_) if b_: get_file_size(b_) valid_url = [a_] if not b_ else [a_, b_] for link in valid_url: download_manager( url=link, path=directory, extension="", ) for f in find_files(directory): if f.endswith(".zip"): unzip_in_folder(f, directory) model = None index = None end_files = find_files(directory) for ff in end_files: if ff.endswith(".pth"): model = ff gr.Info(f"Model found: {ff}") if ff.endswith(".index"): index = ff gr.Info(f"Index found: {ff}") if not model: raise ValueError(f"Model not found in: {end_files}") if not index: gr.Warning("Index not found") else: index = os.path.abspath(index) return os.path.abspath(model), index except Exception as e: raise e finally: # time.sleep(10) # shutil.rmtree(directory) t = threading.Thread(target=clear_files, args=(directory,)) t.start() def add_audio_effects(audio_list): print("Audio effects") result = [] for audio_path in audio_list: try: output_path = f'{os.path.splitext(audio_path)[0]}_effects.wav' # Initialize audio effects plugins board = Pedalboard( [ HighpassFilter(), Compressor(ratio=4, threshold_db=-15), Reverb(room_size=0.10, dry_level=0.8, wet_level=0.2, damping=0.7) ] ) with AudioFile(audio_path) as f: with AudioFile(output_path, 'w', f.samplerate, f.num_channels) as o: # Read one second of audio at a time, until the file is empty: while f.tell() < f.frames: chunk = f.read(int(f.samplerate)) effected = board(chunk, f.samplerate, reset=False) o.write(effected) result.append(output_path) except Exception as e: traceback.print_exc() print(f"Error noisereduce: {str(e)}") result.append(audio_path) return result def apply_noisereduce(audio_list): # https://github.com/sa-if/Audio-Denoiser print("Noice reduce") result = [] for audio_path in audio_list: out_path = f'{os.path.splitext(audio_path)[0]}_noisereduce.wav' try: # Load audio file audio = AudioSegment.from_file(audio_path) # Convert audio to numpy array samples = np.array(audio.get_array_of_samples()) # Reduce noise reduced_noise = nr.reduce_noise(samples, sr=audio.frame_rate, prop_decrease=0.6) # Convert reduced noise signal back to audio reduced_audio = AudioSegment( reduced_noise.tobytes(), frame_rate=audio.frame_rate, sample_width=audio.sample_width, channels=audio.channels ) # Save reduced audio to file reduced_audio.export(out_path, format="wav") result.append(out_path) except Exception as e: traceback.print_exc() print(f"Error noisereduce: {str(e)}") result.append(audio_path) return result @spaces.GPU() def convert_now(audio_files, random_tag, converter): return converter( audio_files, random_tag, overwrite=False, parallel_workers=8 ) @spaces.GPU() def run( audio_files, file_m, pitch_alg, pitch_lvl, file_index, index_inf, r_m_f, e_r, c_b_p, active_noise_reduce, audio_effects, ): if not audio_files: raise ValueError("The audio pls") if isinstance(audio_files, str): audio_files = [audio_files] try: duration_base = librosa.get_duration(filename=audio_files[0]) print("Duration:", duration_base) except Exception as e: print(e) if file_m is not None and file_m.endswith(".txt"): file_m, file_index = find_my_model(file_m, file_index) print(file_m, file_index) random_tag = "USER_"+str(random.randint(10000000, 99999999)) converter.apply_conf( tag=random_tag, file_model=file_m, pitch_algo=pitch_alg, pitch_lvl=pitch_lvl, file_index=file_index, index_influence=index_inf, respiration_median_filtering=r_m_f, envelope_ratio=e_r, consonant_breath_protection=c_b_p, resample_sr=44100 if audio_files[0].endswith('.mp3') else 0, ) time.sleep(0.1) result = convert_now(audio_files, random_tag, converter) if active_noise_reduce: result = apply_noisereduce(result) if audio_effects: result = add_audio_effects(result) return result def audio_conf(): return gr.File( label="Audio files", file_count="multiple", type="filepath", container=True, ) def model_conf(): return gr.File( label="Model file", type="filepath", height=130, ) def pitch_algo_conf(): return gr.Dropdown( PITCH_ALGO_OPT, value=PITCH_ALGO_OPT[4], label="Pitch algorithm", visible=True, interactive=True, ) def pitch_lvl_conf(): return gr.Slider( label="Pitch level", minimum=-24, maximum=24, step=1, value=0, visible=True, interactive=True, ) def index_conf(): return gr.File( label="Index file", type="filepath", height=130, ) def index_inf_conf(): return gr.Slider( minimum=0, maximum=1, label="Index influence", value=0.75, ) def respiration_filter_conf(): return gr.Slider( minimum=0, maximum=7, label="Respiration median filtering", value=3, step=1, interactive=True, ) def envelope_ratio_conf(): return gr.Slider( minimum=0, maximum=1, label="Envelope ratio", value=0.25, interactive=True, ) def consonant_protec_conf(): return gr.Slider( minimum=0, maximum=0.5, label="Consonant breath protection", value=0.5, interactive=True, ) def button_conf(): return gr.Button( "Inference", variant="primary", ) def output_conf(): return gr.File( label="Result", file_count="multiple", interactive=False, ) def active_tts_conf(): return gr.Checkbox( False, label="TTS", # info="", container=False, ) def tts_voice_conf(): return gr.Dropdown( label="tts voice", choices=voices, visible=False, value="en-US-EmmaMultilingualNeural-Female", ) def tts_text_conf(): return gr.Textbox( value="", placeholder="Write the text here...", label="Text", visible=False, lines=3, ) def tts_button_conf(): return gr.Button( "Process TTS", variant="secondary", visible=False, ) def tts_play_conf(): return gr.Checkbox( False, label="Play", # info="", container=False, visible=False, ) def sound_gui(): return gr.Audio( value=None, type="filepath", # format="mp3", autoplay=True, visible=False, ) def denoise_conf(): return gr.Checkbox( False, label="Denoise", # info="", container=False, visible=True, ) def effects_conf(): return gr.Checkbox( False, label="Reverb", # info="", container=False, visible=True, ) @spaces.GPU def infer_tts_audio(tts_voice, tts_text, play_tts): out_dir = "output" folder_tts = "USER_"+str(random.randint(10000, 99999)) os.makedirs(out_dir, exist_ok=True) os.makedirs(os.path.join(out_dir, folder_tts), exist_ok=True) out_path = os.path.join(out_dir, folder_tts, "tts.mp3") asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(out_path)) if play_tts: return [out_path], out_path return [out_path], None def show_components_tts(value_active): return gr.update( visible=value_active ), gr.update( visible=value_active ), gr.update( visible=value_active ), gr.update( visible=value_active ) def down_active_conf(): return gr.Checkbox( False, label="URL-to-Model", # info="", container=False, ) def down_url_conf(): return gr.Textbox( value="", placeholder="Write the url here...", label="Enter URL", visible=False, lines=1, ) def down_button_conf(): return gr.Button( "Process", variant="secondary", visible=False, ) def show_components_down(value_active): return gr.update( visible=value_active ), gr.update( visible=value_active ), gr.update( visible=value_active ) def get_gui(theme): with gr.Blocks(theme=theme, delete_cache=(3200, 3200)) as app: active_tts = active_tts_conf() with gr.Row(): with gr.Column(scale=1): tts_text = tts_text_conf() with gr.Column(scale=2): with gr.Row(): with gr.Column(): with gr.Row(): tts_voice = tts_voice_conf() tts_active_play = tts_play_conf() tts_button = tts_button_conf() tts_play = sound_gui() active_tts.change( fn=show_components_tts, inputs=[active_tts], outputs=[tts_voice, tts_text, tts_button, tts_active_play], ) aud = audio_conf() # gr.HTML("