Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
from pdf2image import convert_from_path
|
6 |
+
import pytesseract
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
9 |
+
from langchain_community.vectorstores import FAISS
|
10 |
+
from langchain.memory import ConversationBufferMemory
|
11 |
+
from langchain.prompts import PromptTemplate
|
12 |
+
from langchain.chains import RetrievalQA
|
13 |
+
from langchain_groq import ChatGroq
|
14 |
+
|
15 |
+
|
16 |
+
class ChatbotModel:
|
17 |
+
def __init__(self):
|
18 |
+
os.environ["GROQ_API_KEY"] = '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'
|
19 |
+
|
20 |
+
self.embeddings = HuggingFaceEmbeddings(
|
21 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
22 |
+
model_kwargs={'device': 'cpu'},
|
23 |
+
encode_kwargs={'normalize_embeddings': True}
|
24 |
+
)
|
25 |
+
|
26 |
+
self.llm = ChatGroq(
|
27 |
+
model='llama3-70b-8192',
|
28 |
+
temperature=0.5,
|
29 |
+
max_tokens=None,
|
30 |
+
timeout=None,
|
31 |
+
max_retries=2,
|
32 |
+
)
|
33 |
+
|
34 |
+
self.memory = ConversationBufferMemory(memory_key="history", input_key="question")
|
35 |
+
|
36 |
+
self.template = """You are an intelligent assistant... (Rest of your prompt as is)"""
|
37 |
+
|
38 |
+
self.QA_CHAIN_PROMPT = PromptTemplate(
|
39 |
+
input_variables=["history", "context", "question"],
|
40 |
+
template=self.template
|
41 |
+
)
|
42 |
+
self.db1 = None
|
43 |
+
self.qa_chain = None
|
44 |
+
|
45 |
+
def ocr_image(self, image_path, language='eng+guj'):
|
46 |
+
img = Image.open(image_path)
|
47 |
+
return pytesseract.image_to_string(img, lang=language)
|
48 |
+
|
49 |
+
def ocr_pdf(self, pdf_path, language='eng+guj'):
|
50 |
+
images = convert_from_path(pdf_path)
|
51 |
+
return "\n".join([pytesseract.image_to_string(img, lang=language) for img in images])
|
52 |
+
|
53 |
+
def process_file(self, uploaded_file):
|
54 |
+
_, file_extension = os.path.splitext(uploaded_file.name)
|
55 |
+
file_extension = file_extension.lower()
|
56 |
+
|
57 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as temp_file:
|
58 |
+
temp_file.write(uploaded_file.read())
|
59 |
+
temp_path = temp_file.name
|
60 |
+
|
61 |
+
if file_extension == '.pdf':
|
62 |
+
raw_text = self.ocr_pdf(temp_path, language='guj+eng')
|
63 |
+
elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']:
|
64 |
+
raw_text = self.ocr_image(temp_path, language='guj+eng')
|
65 |
+
else:
|
66 |
+
return "Unsupported file format."
|
67 |
+
|
68 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
69 |
+
text_chunks = text_splitter.split_text(raw_text)
|
70 |
+
|
71 |
+
self.db1 = FAISS.from_documents(text_chunks, self.embeddings)
|
72 |
+
self.qa_chain = RetrievalQA.from_chain_type(
|
73 |
+
self.llm,
|
74 |
+
retriever=self.db1.as_retriever(),
|
75 |
+
chain_type='stuff',
|
76 |
+
verbose=True,
|
77 |
+
chain_type_kwargs={
|
78 |
+
"verbose": True,
|
79 |
+
"prompt": self.QA_CHAIN_PROMPT,
|
80 |
+
"memory": self.memory
|
81 |
+
}
|
82 |
+
)
|
83 |
+
|
84 |
+
return "File processed successfully!"
|
85 |
+
|
86 |
+
def get_response(self, user_input):
|
87 |
+
if not self.qa_chain:
|
88 |
+
return "Please upload and process a file before asking questions."
|
89 |
+
response = self.qa_chain({"query": user_input})
|
90 |
+
return response["result"]
|
91 |
+
|
92 |
+
|
93 |
+
chatbot = ChatbotModel()
|
94 |
+
|
95 |
+
|
96 |
+
def upload_and_process(file):
|
97 |
+
return chatbot.process_file(file)
|
98 |
+
|
99 |
+
|
100 |
+
def ask_question(question):
|
101 |
+
return chatbot.get_response(question)
|
102 |
+
|
103 |
+
|
104 |
+
interface = gr.Blocks()
|
105 |
+
|
106 |
+
with interface:
|
107 |
+
gr.Markdown("# Educational Chatbot with Document Analysis")
|
108 |
+
with gr.Row():
|
109 |
+
file_upload = gr.File(label="Upload PDF or Image")
|
110 |
+
upload_btn = gr.Button("Process File")
|
111 |
+
output = gr.Textbox(label="File Processing Status")
|
112 |
+
|
113 |
+
with gr.Row():
|
114 |
+
question_box = gr.Textbox(label="Ask a Question")
|
115 |
+
ask_btn = gr.Button("Submit")
|
116 |
+
answer = gr.Textbox(label="Answer")
|
117 |
+
|
118 |
+
upload_btn.click(upload_and_process, inputs=file_upload, outputs=output)
|
119 |
+
ask_btn.click(ask_question, inputs=question_box, outputs=answer)
|
120 |
+
|
121 |
+
interface.launch()
|