Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,101 +1,21 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
pdf_path = os.path.join(pdf_folder_path, file)
|
19 |
-
loader = PyPDFLoader(pdf_path)
|
20 |
-
documents.extend(loader.load())
|
21 |
-
|
22 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'},
|
23 |
-
encode_kwargs={'normalize_embeddings': True})
|
24 |
-
|
25 |
-
text_splitter = CharacterTextSplitter(
|
26 |
-
separator="\n",
|
27 |
-
chunk_size=1200,
|
28 |
-
chunk_overlap=500,
|
29 |
-
length_function=len)
|
30 |
-
text_chunks = text_splitter.split_documents(documents)
|
31 |
-
|
32 |
-
db1 = FAISS.from_documents(text_chunks, embeddings)
|
33 |
-
|
34 |
-
retriever1 = db1.as_retriever(search_type="similarity", search_kwargs={"k": 1})
|
35 |
-
|
36 |
-
memory = ConversationBufferMemory(memory_key="history", input_key="question")
|
37 |
-
|
38 |
-
llm = ChatGroq(
|
39 |
-
# model="mixtral-8x7b-32768",
|
40 |
-
# model ='llama3-8b-8192',
|
41 |
-
model="llama-3.1-8b-instant",
|
42 |
-
temperature=0.655,
|
43 |
-
max_tokens=None,
|
44 |
-
timeout=None,
|
45 |
-
max_retries=2,
|
46 |
-
# other params...
|
47 |
)
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
Also make sure to reply in the same language as used by the student in the current query.
|
52 |
-
|
53 |
-
NOTE that your answer should be accurate. Explain the answer such that a student with no idea about the ACPC can understand well.
|
54 |
-
|
55 |
-
For example,
|
56 |
-
|
57 |
-
Example 1
|
58 |
-
|
59 |
-
Chat history:
|
60 |
-
The student named Priya says hello.
|
61 |
-
|
62 |
-
Question:
|
63 |
-
What is the maximum size of passport size photo allowed?
|
64 |
-
|
65 |
-
Answer:
|
66 |
-
The maximum size of passport size photo allowed is 200 KB.
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
{context}
|
71 |
-
|
72 |
-
------
|
73 |
-
Chat history :
|
74 |
-
{history}
|
75 |
-
|
76 |
-
------
|
77 |
-
|
78 |
-
|
79 |
-
Question: {question}
|
80 |
-
Answer:
|
81 |
-
"""
|
82 |
-
|
83 |
-
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["history", "context", "question"], template=template, )
|
84 |
-
qa_chain = RetrievalQA.from_chain_type(llm,
|
85 |
-
retriever=db1.as_retriever(),
|
86 |
-
chain_type='stuff',
|
87 |
-
verbose=True,
|
88 |
-
chain_type_kwargs={"verbose": True, "prompt": QA_CHAIN_PROMPT,
|
89 |
-
"memory": ConversationBufferMemory(memory_key="history",
|
90 |
-
input_key="question"), })
|
91 |
-
|
92 |
-
print("Hi! How can I help you today?")
|
93 |
-
while True:
|
94 |
-
question = input("User: ")
|
95 |
-
if question.lower() == "quit":
|
96 |
-
print("Thank you for chatting. Goodbye!")
|
97 |
-
break
|
98 |
-
|
99 |
-
result1 = qa_chain({"query": question})
|
100 |
-
print(result1["result"])
|
101 |
-
print("-----------------------------")
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
|
4 |
+
# Load the model
|
5 |
+
model = torch.load("chatbot_model.pt") # Adjust as needed
|
6 |
+
|
7 |
+
# Define the chatbot function
|
8 |
+
def chatbot(input_text):
|
9 |
+
# Use your model inference function here
|
10 |
+
response = get_response(input_text) # Call to your response function
|
11 |
+
return response
|
12 |
+
|
13 |
+
# Define the Gradio interface
|
14 |
+
iface = gr.Interface(
|
15 |
+
fn=chatbot, # The function that will be called
|
16 |
+
inputs="text", # User will input text
|
17 |
+
outputs="text" # Model will output text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
)
|
19 |
|
20 |
+
# Launch the app
|
21 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|