File size: 9,482 Bytes
8fa1f05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import streamlit as st
import os
from PIL import Image
import pytesseract
from pdf2image import convert_from_path
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.memory import ConversationBufferMemory
from langchain_groq import ChatGroq
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.vectorstores import VectorStoreRetriever

# Initialize the Groq API Key and the model
os.environ["GROQ_API_KEY"] = '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'
# config = {'max_new_tokens': 512, 'context_length': 8000}
llm = ChatGroq(
    model='llama3-70b-8192',
    temperature=0.5,
    max_tokens=None,
    timeout=None,
    max_retries=2
)

# Define OCR functions for image and PDF files
def ocr_image(image_path, language='eng+guj'):
    img = Image.open(image_path)
    text = pytesseract.image_to_string(img, lang=language)
    return text

def ocr_pdf(pdf_path, language='eng+guj'):
    images = convert_from_path(pdf_path)
    all_text = ""
    for img in images:
        text = pytesseract.image_to_string(img, lang=language)
        all_text += text + "\n"
    return all_text

def ocr_file(file_path):
    file_extension = os.path.splitext(file_path)[1].lower()

    if file_extension == ".pdf":
        text_re = ocr_pdf(file_path, language='guj+eng')
    elif file_extension in [".jpg", ".jpeg", ".png", ".bmp"]:
        text_re = ocr_image(file_path, language='guj+eng')
    else:
        raise ValueError("Unsupported file format. Supported formats are PDF, JPG, JPEG, PNG, BMP.")

    return text_re

def get_text_chunks(text):
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
    chunks = text_splitter.split_text(text)
    return chunks

# Function to create or update the vector store
def get_vector_store(text_chunks):
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
    vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
    
    # Ensure the directory exists before saving the vector store
    os.makedirs("faiss_index", exist_ok=True)
    vector_store.save_local("faiss_index")
    
    return vector_store

# Function to process multiple files and extract vector store
def process_ocr_and_pdf_files(file_paths):
    raw_text = ""
    for file_path in file_paths:
        raw_text += ocr_file(file_path) + "\n"
    text_chunks = get_text_chunks(raw_text)
    return get_vector_store(text_chunks)

# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
# new_vector_store = FAISS.load_local(
#     "faiss_index", embeddings, allow_dangerous_deserialization=True
# )

# docs = new_vector_store.similarity_search("qux")
# Conversational chain for Q&A
def get_conversational_chain():
    template = """You are an intelligent educational assistant specialized in handling queries about documents. You have been provided with OCR-processed text from the uploaded files that contains important educational information.

Core Responsibilities:
1. Language Processing:
   - Identify the language of the user's query (English or Gujarati)
   - Respond in the same language as the query
   - If the query is in Gujarati, ensure the response maintains proper Gujarati grammar and terminology
   - For technical terms, provide both English and Gujarati versions when relevant

2. Document Understanding:
   - Analyze the OCR-processed text from the uploaded files
   - Account for potential OCR errors or misinterpretations
   - Focus on extracting accurate information despite possible OCR imperfections

3. Response Guidelines:
   - Provide direct, clear answers based solely on the document content
   - If information is unclear due to OCR quality, mention this limitation
   - For numerical data (dates, percentages, marks), double-check accuracy before responding
   - If information is not found in the documents, clearly state: "This information is not present in the uploaded documents"

4. Educational Context:
   - Maintain focus on educational queries related to the document content
   - For admission-related queries, emphasize important deadlines and requirements
   - For scholarship information, highlight eligibility criteria and application processes
   - For course-related queries, provide detailed, accurate information from the documents

5. Response Format:
   - Structure responses clearly with relevant subpoints when necessary
   - For complex information, break down the answer into digestible parts
   - Include relevant reference points from the documents when applicable
   - Format numerical data and dates clearly

6. Quality Control:
   - Verify that responses align with the document content
   - Don't make assumptions beyond the provided information
   - If multiple interpretations are possible due to OCR quality, mention all possibilities
   - Maintain consistency in terminology throughout the conversation

Important Rules:
- Never make up information not present in the documents
- Don't combine information from previous conversations or external knowledge
- Always indicate if certain parts of the documents are unclear due to OCR quality
- Maintain professional tone while being accessible to students and parents
- If the query is out of scope of the uploaded documents, politely redirect to relevant official sources

Context from uploaded documents:
{context}

Chat History:
{history}

Current Question: {question}
Assistant: Let me provide a clear and accurate response based on the uploaded documents...
"""
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
    new_vector_store = FAISS.load_local(
        "faiss_index", embeddings, allow_dangerous_deserialization=True
    )
    QA_CHAIN_PROMPT = PromptTemplate(input_variables=["history", "context", "question"], template=template)
    qa_chain = RetrievalQA.from_chain_type(llm, retriever=new_vector_store.as_retriever(), chain_type='stuff', verbose=True, chain_type_kwargs={"verbose": True,"prompt": QA_CHAIN_PROMPT,"memory": ConversationBufferMemory(memory_key="history",input_key="question"),})
    return qa_chain
     

def user_input(user_question):
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
    new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
    docs = new_db.similarity_search(user_question)
    chain = get_conversational_chain()
    response = chain({"input_documents": docs, "query": user_question}, return_only_outputs=True)
    result = response.get("result", "No result found")
    
    # Save the question and answer to session state for history tracking
    if 'conversation_history' not in st.session_state:
        st.session_state.conversation_history = []
    
    # Append new question and response to the history
    st.session_state.conversation_history.append({'question': user_question, 'answer': result})
    
    return result

# Streamlit app to upload files and interact with the Q&A system
def main():
    st.title("File Upload and OCR Processing")
    st.write("Upload up to 5 files (PDF, JPG, JPEG, PNG, BMP)")

    uploaded_files = st.file_uploader("Choose files", type=["pdf", "jpg", "jpeg", "png", "bmp"], accept_multiple_files=True)

    if len(uploaded_files) > 0:
        file_paths = []

        # Save uploaded files and process them
        for uploaded_file in uploaded_files[:5]:  # Limit to 5 files
            file_path = os.path.join("temp", uploaded_file.name)
            os.makedirs(os.path.dirname(file_path), exist_ok=True)
            with open(file_path, "wb") as f:
                f.write(uploaded_file.getbuffer())
            file_paths.append(file_path)

        # Process the OCR and PDF files and store the vector data
        st.write("Processing files...")
        vector_store = process_ocr_and_pdf_files(file_paths)
        st.write("Processing completed! The vector store has been updated.")

        # Ask user for a question related to the documents
        user_question = st.text_input("Ask a question related to the uploaded documents:")

        if user_question:
            response = user_input(user_question)
            st.write("Answer:", response)

            # Button to display chat history

            # if st.button("Show Chat History"):
            #     history = st.session_state.get('history', [])
            #     if history:
            #         st.write("Conversation History:")
            #         for idx, (q, a) in enumerate(history):
            #             st.write(f"Q{idx+1}: {q}")
            #             st.write(f"A{idx+1}: {a}")
            #     else:
            #         st.write("No conversation history.")
            with st.expander('Conversation History'):
                for entry in st.session_state.conversation_history:
                    st.info(f"Q: {entry['question']}\nA: {entry['answer']}")
    

if __name__ == "__main__":
    main()