KrishanRao commited on
Commit
70b0105
·
verified ·
1 Parent(s): a642960

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -120
app.py DELETED
@@ -1,120 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding: utf-8
3
-
4
- # In[ ]:
5
-
6
-
7
- import gradio as gr
8
- import requests
9
- from bs4 import BeautifulSoup
10
- from transformers import pipeline
11
- import os
12
-
13
- # Function to extract text from the URL using requests
14
- def extract_text(url):
15
- try:
16
- headers = {
17
- 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
18
- 'Accept-Language': 'en-US,en;q=0.9',
19
- 'Accept-Encoding': 'gzip, deflate, br',
20
- 'Connection': 'keep-alive'
21
- }
22
- # Sending GET request with headers
23
- response = requests.get(url, headers=headers)
24
-
25
- # Check if the response is successful
26
- response.raise_for_status() # Raise an error for bad status codes
27
-
28
- # Parse HTML and extract text
29
- soup = BeautifulSoup(response.text, "html.parser")
30
- text = ' '.join(soup.stripped_strings)
31
- return text
32
- except requests.exceptions.RequestException as e:
33
- return f"Error extracting text from URL: {str(e)}"
34
-
35
- # Load Hugging Face model (for extracting named entities or QA)
36
- try:
37
- ner_model = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")
38
- except Exception as e:
39
- ner_model = None
40
- print(f"Error loading model: {str(e)}")
41
-
42
- # Function to extract information using Hugging Face model
43
- def extract_info_with_model(text):
44
- if not ner_model:
45
- return {
46
- "Keytags": "Model loading failed.",
47
- "Amenities": "Model loading failed.",
48
- "Facilities": "Model loading failed.",
49
- "Seller Name": "Model loading failed.",
50
- "Location Details": "Model loading failed."
51
- }
52
-
53
- try:
54
- # Apply named entity recognition (NER) to extract entities from the text
55
- ner_results = ner_model(text)
56
-
57
- # Initialize variables
58
- keytags = []
59
- seller_name = ""
60
- location_details = ""
61
- amenities = ""
62
- facilities = ""
63
-
64
- # Search for relevant named entities
65
- for entity in ner_results:
66
- if entity['label'] == 'ORG':
67
- keytags.append(entity['word']) # Example: Company or key term (this can be changed)
68
- elif entity['label'] == 'PERSON':
69
- seller_name = entity['word'] # If a person is mentioned, consider it the seller name
70
- elif entity['label'] == 'GPE':
71
- location_details = entity['word'] # Geopolitical entity as location
72
-
73
- # For amenities and facilities, you can modify the logic or use additional models (e.g., question-answering models)
74
- amenities = "No amenities found" # Placeholder for the amenities
75
- facilities = "No facilities found" # Placeholder for the facilities
76
-
77
- return {
78
- "Keytags": ", ".join(keytags) if keytags else "No keytags found",
79
- "Amenities": amenities,
80
- "Facilities": facilities,
81
- "Seller Name": seller_name if seller_name else "No seller name found",
82
- "Location Details": location_details if location_details else "No location details found"
83
- }
84
- except Exception as e:
85
- return {
86
- "Keytags": f"Error processing text: {str(e)}",
87
- "Amenities": f"Error processing text: {str(e)}",
88
- "Facilities": f"Error processing text: {str(e)}",
89
- "Seller Name": f"Error processing text: {str(e)}",
90
- "Location Details": f"Error processing text: {str(e)}"
91
- }
92
-
93
- # Function to combine the extraction process (from URL + model processing)
94
- def get_info(url):
95
- text = extract_text(url)
96
- if "Error" in text:
97
- return text, text, text, text, text # Return the error message for all outputs
98
-
99
- extracted_info = extract_info_with_model(text)
100
-
101
- return (
102
- extracted_info["Keytags"],
103
- extracted_info["Amenities"],
104
- extracted_info["Facilities"],
105
- extracted_info["Seller Name"],
106
- extracted_info["Location Details"]
107
- )
108
-
109
- # Gradio Interface to allow user input and display output
110
- demo = gr.Interface(
111
- fn=get_info,
112
- inputs="text", # Input is a URL
113
- outputs=["text", "text", "text", "text", "text"], # Outputs for each field (Keytags, Amenities, etc.)
114
- title="Real Estate Info Extractor",
115
- description="Extract Keytags, Amenities, Facilities, Seller Name, and Location Details from a real estate article URL."
116
- )
117
-
118
- if __name__ == "__main__":
119
- demo.launch(show_api=False)
120
-