KrishanRao commited on
Commit
ff12a50
·
verified ·
1 Parent(s): 6d1f6ca

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -125
app.py DELETED
@@ -1,125 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding: utf-8
3
-
4
- # In[ ]:
5
-
6
-
7
- import gradio as gr
8
- import requests
9
- from bs4 import BeautifulSoup
10
- from transformers import pipeline
11
- import os
12
-
13
- # Function to extract text from the URL using requests
14
- def extract_text(url):
15
- try:
16
- # Enhanced headers to simulate a real browser request
17
- headers = {
18
- 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
19
- 'Accept-Language': 'en-US,en;q=0.9',
20
- 'Accept-Encoding': 'gzip, deflate, br',
21
- 'Connection': 'keep-alive',
22
- 'Referer': 'https://www.mansionglobal.com/', # Adding referer might help bypass restrictions
23
- 'Upgrade-Insecure-Requests': '1', # Can sometimes help
24
- 'Cache-Control': 'max-age=0'
25
- }
26
-
27
- # Sending GET request with headers
28
- response = requests.get(url, headers=headers)
29
-
30
- # Raise an error for bad status codes
31
- response.raise_for_status()
32
-
33
- # Parse HTML and extract text
34
- soup = BeautifulSoup(response.text, "html.parser")
35
- text = ' '.join(soup.stripped_strings)
36
- return text
37
- except requests.exceptions.RequestException as e:
38
- return f"Error extracting text from URL: {str(e)}"
39
-
40
- # Load Hugging Face model (for extracting named entities or QA)
41
- try:
42
- ner_model = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")
43
- except Exception as e:
44
- ner_model = None
45
- print(f"Error loading model: {str(e)}")
46
-
47
- # Function to extract information using Hugging Face model
48
- def extract_info_with_model(text):
49
- if not ner_model:
50
- return {
51
- "Keytags": "Model loading failed.",
52
- "Amenities": "Model loading failed.",
53
- "Facilities": "Model loading failed.",
54
- "Seller Name": "Model loading failed.",
55
- "Location Details": "Model loading failed."
56
- }
57
-
58
- try:
59
- # Apply named entity recognition (NER) to extract entities from the text
60
- ner_results = ner_model(text)
61
-
62
- # Initialize variables
63
- keytags = []
64
- seller_name = ""
65
- location_details = ""
66
- amenities = ""
67
- facilities = ""
68
-
69
- # Search for relevant named entities
70
- for entity in ner_results:
71
- if entity['label'] == 'ORG':
72
- keytags.append(entity['word']) # Example: Company or key term (this can be changed)
73
- elif entity['label'] == 'PERSON':
74
- seller_name = entity['word'] # If a person is mentioned, consider it the seller name
75
- elif entity['label'] == 'GPE':
76
- location_details = entity['word'] # Geopolitical entity as location
77
-
78
- # For amenities and facilities, you can modify the logic or use additional models (e.g., question-answering models)
79
- amenities = "No amenities found" # Placeholder for the amenities
80
- facilities = "No facilities found" # Placeholder for the facilities
81
-
82
- return {
83
- "Keytags": ", ".join(keytags) if keytags else "No keytags found",
84
- "Amenities": amenities,
85
- "Facilities": facilities,
86
- "Seller Name": seller_name if seller_name else "No seller name found",
87
- "Location Details": location_details if location_details else "No location details found"
88
- }
89
- except Exception as e:
90
- return {
91
- "Keytags": f"Error processing text: {str(e)}",
92
- "Amenities": f"Error processing text: {str(e)}",
93
- "Facilities": f"Error processing text: {str(e)}",
94
- "Seller Name": f"Error processing text: {str(e)}",
95
- "Location Details": f"Error processing text: {str(e)}"
96
- }
97
-
98
- # Function to combine the extraction process (from URL + model processing)
99
- def get_info(url):
100
- text = extract_text(url)
101
- if "Error" in text:
102
- return text, text, text, text, text # Return the error message for all outputs
103
-
104
- extracted_info = extract_info_with_model(text)
105
-
106
- return (
107
- extracted_info["Keytags"],
108
- extracted_info["Amenities"],
109
- extracted_info["Facilities"],
110
- extracted_info["Seller Name"],
111
- extracted_info["Location Details"]
112
- )
113
-
114
- # Gradio Interface to allow user input and display output
115
- demo = gr.Interface(
116
- fn=get_info,
117
- inputs="text", # Input is a URL
118
- outputs=["text", "text", "text", "text", "text"], # Outputs for each field (Keytags, Amenities, etc.)
119
- title="Real Estate Info Extractor",
120
- description="Extract Keytags, Amenities, Facilities, Seller Name, and Location Details from a real estate article URL."
121
- )
122
-
123
- if __name__ == "__main__":
124
- demo.launch(show_api=False)
125
-