Krishna Velama commited on
Commit
286abe0
·
1 Parent(s): bfbf553

first move

Browse files
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .env
2
+ prompt.txt
app.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ from dotenv import load_dotenv
4
+ import torch
5
+ from transformers import RobertaForSequenceClassification, RobertaTokenizerFast, pipeline as text_pipeline
6
+ import gradio as gr
7
+ from openai import OpenAI
8
+
9
+ # Load environment variables from .env file
10
+ load_dotenv()
11
+
12
+ # Get API key from environment
13
+ API_KEY = os.getenv("API_KEY")
14
+
15
+ # Initialize OpenAI client
16
+ client = OpenAI(
17
+ base_url="https://integrate.api.nvidia.com/v1",
18
+ api_key=API_KEY
19
+ )
20
+
21
+ # Load classification model
22
+ def load_emotion_model(model_path):
23
+ model = RobertaForSequenceClassification.from_pretrained(model_path)
24
+ tokenizer = RobertaTokenizerFast.from_pretrained(model_path)
25
+ return model, tokenizer
26
+
27
+ # Map prediction to readable labels
28
+ def map_to_labels(label):
29
+ return "Happy/Positive Mindset" if label.lower() == "positive" else "Depressed/Negative Mindset"
30
+
31
+ # Classify mental state based on user input
32
+ def classify_emotion(user_input, model, tokenizer, device):
33
+ nlp = text_pipeline("text-classification", model=model, tokenizer=tokenizer, device=device)
34
+ result = nlp(user_input)
35
+ return map_to_labels(result[0]['label'])
36
+
37
+ # Analyze emotion using the LLM
38
+ def emotion_analysis(user_input):
39
+
40
+ # # Validate input
41
+ # if not user_input.strip(): # Check for empty or blank input
42
+ # progress_callback("Please provide valid input before submitting.", False)
43
+ # return "No input provided.", ""
44
+
45
+ # Load model
46
+ model_path = "mentalhealth-roberta-base_nemotron_model" # Replace with your model path
47
+ model, tokenizer = load_emotion_model(model_path)
48
+ device = 0 if torch.cuda.is_available() else -1
49
+
50
+ # Step 1: Classify emotion
51
+ predicted_emotion = classify_emotion(user_input, model, tokenizer, device)
52
+
53
+ # Step 2: Generate LLM response
54
+ prompt = f"""
55
+ Task: You are a social psychologist specializing in Roy Baumeister's six-stage theory of emotional progression. Your task is to analyze emotional states based on user input while adhering to specific response boundaries.
56
+
57
+ [Input Information]:
58
+ **User Input**: "{user_input}"
59
+ **Model Output**: "{predicted_emotion}"
60
+
61
+ Specifics:
62
+ 1. Strictly respond only to questions or input related to mental health or emotional well-being. For unrelated input, reply with: "Not a valid question."
63
+ - Example: If the user asks about weather, sports, or other unrelated topics, respond with: "Not a valid question."
64
+ 2. Use the **User Input** as the primary source for determining the emotional state, while considering the **Model Output** ("happy" or "depressed") only as a secondary reference.
65
+ 3. Assign the user’s emotional state to one of Roy Baumeister’s six stages of emotional progression:
66
+ - Stage 1: Falling short of expectations
67
+ - Stage 2: Attributions to self
68
+ - Stage 3: High self-awareness
69
+ - Stage 4: Negative affect
70
+ - Stage 5: Cognitive deconstruction
71
+ - Stage 6: Disinhibition
72
+ 4. Provide specific recommendations for the assigned stage:
73
+ - If the user is **depressed**, suggest stage-specific remedies to improve their emotional state.
74
+ - If the user is **happy**, suggest strategies to maintain or enhance their happiness.
75
+ 5. Prioritize clarity, empathy, and practicality in your analysis and suggestions.
76
+
77
+ [Response Rules]:
78
+ - Do NOT attempt to provide an output if the input is not related to mental health.
79
+ - Always analyze the user’s input independently, even if it conflicts with the model’s predicted output.
80
+
81
+ [Desired Output Format]:
82
+ Emotional Analysis:
83
+ I'd say you're feeling: <Happy/Depressed>
84
+ Emotional Stage: <Stage and brief reasoning>
85
+ Suggested Remedies/Strategies: <Practical advice based on the stage>
86
+ """
87
+
88
+ try:
89
+ completion = client.chat.completions.create(
90
+ model="nvidia/nemotron-4-340b-instruct",
91
+ messages=[{"role": "user", "content": prompt}],
92
+ temperature=0.2,
93
+ top_p=0.7,
94
+ max_tokens=512,
95
+ stream=True
96
+ )
97
+
98
+ # Iterate over the streaming response
99
+ response = ""
100
+ for chunk in completion:
101
+ if chunk.choices[0].delta.content is not None:
102
+ print(chunk.choices[0].delta.content, end="")
103
+ # response = chunk.choices[0].delta.content
104
+ response_chunk = chunk.choices[0].delta.content
105
+ response += response_chunk
106
+ else:
107
+ print(f"Unexpected chunk format: {chunk}")
108
+
109
+ except Exception as e:
110
+ response = f"An error occurred while processing the response: {e}"
111
+ response= str(response).replace("*", '')
112
+ return response
113
+
114
+ def extract_analysis_details(analysis_text):
115
+ feelings_match = re.search(r"I'd say you're feeling:\s*([^\n]+)", analysis_text)
116
+ feelings = feelings_match.group(1).strip() if feelings_match else "Not Found"
117
+ if feelings.lower() == "happy":
118
+ feelings = feelings + " with Positive Mindset"
119
+ elif feelings.lower() == "depressed":
120
+ feelings = feelings + " with Negative Mindset"
121
+ else:
122
+ feelings
123
+
124
+ # Extract emotional stage
125
+ stage_match = re.search(r"Emotional Stage:\s*([^\n.]+)", analysis_text)
126
+ emotional_stage = stage_match.group(1).strip() if stage_match else "Not Found"
127
+
128
+ # Regex to match the section header and capture from there to the end
129
+ pattern = r"(Suggested Remedies|Suggested Remedies/Strategies|Suggested Strategies):.*"
130
+ match = re.search(pattern, analysis_text, re.DOTALL)
131
+ suggestions = match.group(0).strip() if match else "No matching section found."
132
+ # print(suggestions)
133
+
134
+ if feelings == "Not Found":
135
+ feelings = "Not a valid question."
136
+ return feelings, emotional_stage, suggestions
137
+
138
+ # Gradio interface with input validation
139
+ def validate_and_run(user_input):
140
+ if not user_input.strip(): # Check if the input is empty or just spaces
141
+ return "Please provide valid input before submitting.", "Not Applicable", "Not Applicable"
142
+ else:
143
+ response = emotion_analysis(user_input)
144
+ return extract_analysis_details(response)
145
+
146
+
147
+ # Gradio interface
148
+ iface = gr.Interface(
149
+ fn=validate_and_run,
150
+ inputs=gr.Textbox(#lines=2,
151
+ label="How are you feeling today?",
152
+ placeholder="Share your thoughts here...!"),
153
+ outputs=[
154
+ # gr.Textbox(label="Analysing Your State of Mind...."),
155
+ # gr.Textbox(label="Providing Best Strategies")
156
+ # gr.Textbox(label="Original"),
157
+ gr.Textbox(label="Feelings"),
158
+ gr.Textbox(label="Emotional Stage"),
159
+ gr.Textbox(label="Providing Best Strategies")
160
+ ],
161
+ # live=True,
162
+ title="Analyze your emotions and generate stage-specific psychological insights\n",
163
+ # title = "Emotion Analysis and Dynamic Response Generator"
164
+ # description="Analyze your emotions and receive dynamic psychological insights."
165
+ )
166
+
167
+ # Launch the app
168
+ if __name__ == "__main__":
169
+ iface.launch()
170
+
mentalhealth-roberta-base_nemotron_model/config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "roberta-base",
3
+ "architectures": [
4
+ "RobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "negative",
15
+ "1": "positive"
16
+ },
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 3072,
19
+ "label2id": {
20
+ "negative": 0,
21
+ "positive": 1
22
+ },
23
+ "layer_norm_eps": 1e-05,
24
+ "max_position_embeddings": 514,
25
+ "model_type": "roberta",
26
+ "num_attention_heads": 12,
27
+ "num_hidden_layers": 12,
28
+ "pad_token_id": 1,
29
+ "position_embedding_type": "absolute",
30
+ "problem_type": "single_label_classification",
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.46.2",
33
+ "type_vocab_size": 1,
34
+ "use_cache": true,
35
+ "vocab_size": 50265
36
+ }
mentalhealth-roberta-base_nemotron_model/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
mentalhealth-roberta-base_nemotron_model/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20f6612a4917ba6e0b7d9b062ec628cd77b29b61a9053e6ba875041adccfcb82
3
+ size 498612824
mentalhealth-roberta-base_nemotron_model/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
mentalhealth-roberta-base_nemotron_model/tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "RobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }
mentalhealth-roberta-base_nemotron_model/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ python-dotenv
2
+ gradio
3
+ transformers
4
+ torch
5
+ openai
6
+
7
+