Krishnaik06 commited on
Commit
7f2feb0
·
verified ·
1 Parent(s): 3a8bd94

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -17
app.py CHANGED
@@ -1,20 +1,28 @@
1
  from fastapi import FastAPI
2
- from fastapi.staticfiles import StaticFiles
3
- from fastapi.responses import FileResponse
4
-
5
  from transformers import pipeline
6
-
 
7
  app = FastAPI()
8
-
9
- pipe_flan = pipeline("text2text-generation", model="google/flan-t5-small")
10
-
11
- @app.get("/infer_t5")
12
- def t5(input):
13
- output = pipe_flan(input)
14
- return {"output": output[0]["generated_text"]}
15
-
16
- app.mount("/", StaticFiles(directory="static", html=True), name="static")
17
-
18
- @app.get("/")
19
- def index() -> FileResponse:
20
- return FileResponse(path="/app/static/index.html", media_type="text/html")
 
 
 
 
 
 
 
 
 
 
 
1
  from fastapi import FastAPI
 
 
 
2
  from transformers import pipeline
3
+
4
+ # Create a new FastAPI app instance
5
  app = FastAPI()
6
+
7
+ # Initialize the text generation pipeline
8
+ # This function will be able to generate text
9
+ # given an input.
10
+ pipe = pipeline("text2text-generation",
11
+ model="google/flan-t5-small")
12
+
13
+ # Define a function to handle the GET request at `/generate`
14
+ # The generate() function is defined as a FastAPI route that takes a
15
+ # string parameter called text. The function generates text based on the # input using the pipeline() object, and returns a JSON response
16
+ # containing the generated text under the key "output"
17
+ @app.get("/generate")
18
+ def generate(text: str):
19
+ """
20
+ Using the text2text-generation pipeline from `transformers`, generate text
21
+ from the given input text. The model used is `google/flan-t5-small`, which
22
+ can be found [here](<https://huggingface.co/google/flan-t5-small>).
23
+ """
24
+ # Use the pipeline to generate text from the given input text
25
+ output = pipe(text)
26
+
27
+ # Return the generated text in a JSON response
28
+ return {"output": output[0]["generated_text"]}