Krishnaik06 commited on
Commit
b211c15
·
verified ·
1 Parent(s): 630b5fa

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +6 -19
  2. requirements.txt +0 -2
app.py CHANGED
@@ -1,7 +1,5 @@
1
- from langchain_huggingface import HuggingFaceEndpoint
2
- repo_id="mistralai/Mistral-7B-Instruct-v0.2"
3
-
4
- llm=HuggingFaceEndpoint(repo_id=repo_id,max_length=128,temperature=0.7)
5
 
6
  # Create a new FastAPI app instance
7
  app = FastAPI()
@@ -9,19 +7,8 @@ app = FastAPI()
9
  # Initialize the text generation pipeline
10
  # This function will be able to generate text
11
  # given an input.
12
-
13
-
14
- from langchain import PromptTemplate, LLMChain
15
-
16
-
17
- template = """Question: {question}
18
- Answer: Let's think step by step."""
19
- prompt = PromptTemplate(template=template, input_variables=["question"])
20
- llm_chain=LLMChain(llm=llm,prompt=prompt)
21
-
22
- @app.get("/")
23
- def read_root():
24
- return {"Hello": "World"}
25
 
26
  # Define a function to handle the GET request at `/generate`
27
  # The generate() function is defined as a FastAPI route that takes a
@@ -35,7 +22,7 @@ def generate(text: str):
35
  can be found [here](<https://huggingface.co/google/flan-t5-small>).
36
  """
37
  # Use the pipeline to generate text from the given input text
38
- output=llm_chain.invoke(text)
39
 
40
  # Return the generated text in a JSON response
41
- return {"output": output["text"]}
 
1
+ from fastapi import FastAPI
2
+ from transformers import pipeline
 
 
3
 
4
  # Create a new FastAPI app instance
5
  app = FastAPI()
 
7
  # Initialize the text generation pipeline
8
  # This function will be able to generate text
9
  # given an input.
10
+ pipe = pipeline("text2text-generation",
11
+ model="google/flan-t5-small")
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  # Define a function to handle the GET request at `/generate`
14
  # The generate() function is defined as a FastAPI route that takes a
 
22
  can be found [here](<https://huggingface.co/google/flan-t5-small>).
23
  """
24
  # Use the pipeline to generate text from the given input text
25
+ output = pipe(text)
26
 
27
  # Return the generated text in a JSON response
28
+ return {"output": output[0]["generated_text"]}
requirements.txt CHANGED
@@ -4,5 +4,3 @@ uvicorn[standard]==0.17.*
4
  sentencepiece==0.1.*
5
  torch==1.11.*
6
  transformers==4.*
7
- langchain-huggingface
8
- langchain
 
4
  sentencepiece==0.1.*
5
  torch==1.11.*
6
  transformers==4.*