Krishnaik06 commited on
Commit
ff016ab
·
verified ·
1 Parent(s): cb64651

Upload 3 files

Browse files
Files changed (2) hide show
  1. Dockerfile +3 -3
  2. app.py +17 -25
Dockerfile CHANGED
@@ -10,12 +10,12 @@ COPY ./requirements.txt /code/requirements.txt
10
  # Install requirements.txt
11
  RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
12
 
13
- # Set up a new user named "user" with user ID 1000
14
- RUN useradd -m -u 1000 user
15
  # Switch to the "user" user
16
  USER user
17
  # Set home to the user's home directory
18
- # Set home to the user's home directory
19
  ENV HOME=/home/user \
20
  PATH=/home/user/.local/bin:$PATH
21
 
 
10
  # Install requirements.txt
11
  RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
12
 
13
+ # Set up a new user named "user"
14
+ RUN useradd user
15
  # Switch to the "user" user
16
  USER user
17
  # Set home to the user's home directory
18
+
19
  ENV HOME=/home/user \
20
  PATH=/home/user/.local/bin:$PATH
21
 
app.py CHANGED
@@ -1,28 +1,20 @@
1
  from fastapi import FastAPI
 
 
 
2
  from transformers import pipeline
3
-
4
- # Create a new FastAPI app instance
5
  app = FastAPI()
6
-
7
- # Initialize the text generation pipeline
8
- # This function will be able to generate text
9
- # given an input.
10
- pipe = pipeline("text2text-generation",
11
- model="google/flan-t5-small")
12
-
13
- # Define a function to handle the GET request at `/generate`
14
- # The generate() function is defined as a FastAPI route that takes a
15
- # string parameter called text. The function generates text based on the # input using the pipeline() object, and returns a JSON response
16
- # containing the generated text under the key "output"
17
- @app.get("/generate")
18
- def generate(text: str):
19
- """
20
- Using the text2text-generation pipeline from `transformers`, generate text
21
- from the given input text. The model used is `google/flan-t5-small`, which
22
- can be found [here](<https://huggingface.co/google/flan-t5-small>).
23
- """
24
- # Use the pipeline to generate text from the given input text
25
- output = pipe(text)
26
-
27
- # Return the generated text in a JSON response
28
- return {"output": output[0]["generated_text"]}
 
1
  from fastapi import FastAPI
2
+ from fastapi.staticfiles import StaticFiles
3
+ from fastapi.responses import FileResponse
4
+
5
  from transformers import pipeline
6
+
 
7
  app = FastAPI()
8
+
9
+ pipe_flan = pipeline("text2text-generation", model="google/flan-t5-small")
10
+
11
+ @app.get("/infer_t5")
12
+ def t5(input):
13
+ output = pipe_flan(input)
14
+ return {"output": output[0]["generated_text"]}
15
+
16
+ app.mount("/", StaticFiles(directory="static", html=True), name="static")
17
+
18
+ @app.get("/")
19
+ def index() -> FileResponse:
20
+ return FileResponse(path="/app/static/index.html", media_type="text/html")