Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,17 @@ import gradio as gr
|
|
2 |
from openai import OpenAI
|
3 |
import speech_recognition as sr
|
4 |
import os
|
5 |
-
import io
|
6 |
-
import
|
7 |
-
import
|
8 |
-
import
|
9 |
-
|
10 |
-
# --- Fetch API Key from Environment Variable ---
|
11 |
-
# This is the SECURE way to handle API keys in Hugging Face Spaces.
|
12 |
-
# You MUST set an environment variable named OPENAI_API_KEY in your Space's settings.
|
13 |
-
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
system_prompt = """
|
21 |
You are a sophisticated AI voice bot representing Krishnavamshi Thumma. Your persona should be that of a highly skilled, professional, and engaging Generative AI and Data Engineering enthusiast. When responding to questions, embody the following detailed professional identity:
|
@@ -55,214 +52,112 @@ system_prompt = """
|
|
55 |
# Initialize the SpeechRecognition Recognizer
|
56 |
r = sr.Recognizer()
|
57 |
|
58 |
-
# Modified function to accept audio as a numpy array and samplerate
|
59 |
def transcribe_audio_and_chat(audio_tuple, history):
|
60 |
-
# Check if API key is available in environment
|
61 |
if not OPENAI_API_KEY:
|
62 |
-
raise gr.Error("❌ OpenAI API key not found.
|
63 |
|
64 |
-
# Handle cases where history might be None (defensive programming)
|
65 |
if history is None:
|
66 |
history = []
|
67 |
|
68 |
-
#
|
69 |
-
tts_audio_output = None
|
70 |
|
71 |
if audio_tuple is None:
|
72 |
-
|
73 |
-
# Return history, history, None, None to clear inputs/outputs appropriately
|
74 |
-
return history, history, None, None
|
75 |
|
76 |
samplerate, audio_np_array = audio_tuple
|
77 |
|
78 |
try:
|
79 |
-
# Convert the NumPy array to a format speech_recognition can handle (in-memory WAV)
|
80 |
if audio_np_array.dtype != np.int16:
|
81 |
-
|
82 |
-
|
83 |
-
wav_byte_io = io.BytesIO()
|
84 |
-
wavfile.write(wav_byte_io, samplerate, audio_np_array)
|
85 |
-
wav_byte_io.seek(0) # Rewind to the beginning of the BytesIO object
|
86 |
|
87 |
-
#
|
88 |
-
with
|
89 |
-
|
|
|
90 |
|
91 |
-
|
92 |
-
try:
|
93 |
-
# Using OpenAI's Whisper model for STT
|
94 |
client = OpenAI(api_key=OPENAI_API_KEY)
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
# If you wanted to use OpenAI's Whisper ASR here, you'd do:
|
104 |
-
# audio_file_for_whisper = io.BytesIO(wav_byte_io.getvalue()) # Reset stream for Whisper
|
105 |
-
# audio_file_for_whisper.name = "audio.wav" # Whisper API needs a filename for BytesIO
|
106 |
-
# transcript = client.audio.transcriptions.create(
|
107 |
-
# model=OPENAI_STT_MODEL, # "whisper-1"
|
108 |
-
# file=audio_file_for_whisper
|
109 |
-
# )
|
110 |
-
# user_input = transcript.text
|
111 |
-
|
112 |
-
print(f"Transcribed User Input: {user_input}") # For debugging purposes
|
113 |
-
|
114 |
-
except sr.UnknownValueError:
|
115 |
-
history.append({"role": "assistant", "content": "Sorry, I could not understand the audio. Please try again."})
|
116 |
-
return history, history, None, tts_audio_output # Still clear inputs/outputs
|
117 |
-
except sr.RequestError as e:
|
118 |
-
history.append({"role": "assistant", "content": f"Could not request results from Speech Recognition service; {e}"})
|
119 |
-
return history, history, None, tts_audio_output # Still clear inputs/outputs
|
120 |
-
|
121 |
-
# --- Chat Completion ---
|
122 |
-
client = OpenAI(api_key=OPENAI_API_KEY)
|
123 |
|
|
|
124 |
messages_for_openai = [{"role": "system", "content": system_prompt}] + history
|
125 |
messages_for_openai.append({"role": "user", "content": user_input})
|
126 |
|
127 |
-
|
128 |
model=OPENAI_CHAT_MODEL,
|
129 |
messages=messages_for_openai,
|
130 |
temperature=0.7
|
131 |
)
|
132 |
|
133 |
-
bot_reply =
|
134 |
-
|
135 |
history.append({"role": "user", "content": user_input})
|
136 |
history.append({"role": "assistant", "content": bot_reply})
|
137 |
-
|
138 |
-
#
|
139 |
try:
|
140 |
tts_response = client.audio.speech.create(
|
141 |
-
model=OPENAI_TTS_MODEL,
|
142 |
-
voice="alloy",
|
143 |
input=bot_reply,
|
144 |
-
response_format="
|
145 |
)
|
146 |
-
|
147 |
-
# Read the audio stream into a BytesIO object
|
148 |
-
tts_audio_bytes = io.BytesIO()
|
149 |
-
for chunk in tts_response.iter_bytes(chunk_size=4096):
|
150 |
-
tts_audio_bytes.write(chunk)
|
151 |
-
tts_audio_bytes.seek(0) # Rewind for reading
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
156 |
|
157 |
except Exception as tts_e:
|
158 |
-
print(f"Error
|
159 |
-
|
160 |
-
|
161 |
-
tts_audio_output = None # Ensure it's None if there's an error
|
162 |
-
history.append({"role": "assistant", "content": "(Voice generation failed.)"}) # Optional: notify user
|
163 |
|
164 |
-
|
165 |
-
return history, history, None, tts_audio_output
|
166 |
|
167 |
except Exception as e:
|
168 |
-
print(f"
|
169 |
-
|
170 |
-
raise gr.Error(f"❌ An unexpected error occurred: {str(e)}")
|
171 |
-
|
172 |
|
173 |
-
#
|
174 |
with gr.Blocks(title="Voice Bot: Krishnavamshi Thumma") as demo:
|
175 |
gr.Markdown("## 🎙️ Krishnavamshi Thumma - Voice Assistant")
|
176 |
|
177 |
-
gr.
|
178 |
-
|
179 |
-
|
180 |
-
height: 60vh;
|
181 |
-
overflow-y: auto;
|
182 |
-
padding: 20px;
|
183 |
-
border-radius: 10px;
|
184 |
-
background: #f9f9f9;
|
185 |
-
margin-bottom: 20px;
|
186 |
-
}
|
187 |
-
.message {
|
188 |
-
margin: 10px 0;
|
189 |
-
padding: 12px;
|
190 |
-
border-radius: 8px;
|
191 |
-
}
|
192 |
-
.user {
|
193 |
-
background: #e3f2fd;
|
194 |
-
text-align: right;
|
195 |
-
}
|
196 |
-
.bot {
|
197 |
-
background: #f5f5f5;
|
198 |
-
}
|
199 |
-
#audioInputComponent {
|
200 |
-
margin-top: 20px;
|
201 |
-
}
|
202 |
-
.key-status { /* Not strictly needed anymore but keeping for style consistency if other status messages arise */
|
203 |
-
padding: 5px;
|
204 |
-
margin-top: 5px;
|
205 |
-
border-radius: 4px;
|
206 |
-
}
|
207 |
-
.success {
|
208 |
-
background: #d4edda;
|
209 |
-
color: #155724;
|
210 |
-
}
|
211 |
-
.error {
|
212 |
-
background: #f8d7da;
|
213 |
-
color: #721c24;
|
214 |
-
}
|
215 |
-
</style>
|
216 |
-
""")
|
217 |
-
|
218 |
-
# --- UI Components ---
|
219 |
-
# Chatbot component to display messages
|
220 |
-
chatbot = gr.Chatbot(elem_id="chatBox", type="messages", height=400)
|
221 |
-
# State component to maintain chat history in OpenAI's message format
|
222 |
-
state = gr.State([])
|
223 |
-
|
224 |
-
# Audio input component for microphone recording
|
225 |
audio_input = gr.Audio(
|
226 |
sources=["microphone"],
|
227 |
-
type="numpy",
|
228 |
label="Speak your message here",
|
229 |
-
|
230 |
-
streaming=False # Process audio after full recording
|
231 |
)
|
232 |
|
233 |
-
#
|
234 |
tts_audio_output = gr.Audio(
|
235 |
label="Bot's Voice Response",
|
236 |
-
type="
|
237 |
-
autoplay=True
|
238 |
-
waveform_options={
|
239 |
-
"skip_length": 0,
|
240 |
-
"waveform_color": "#2196F3",
|
241 |
-
"waveform_progress_color": "#4CAF50",
|
242 |
-
# Removed 'cursor_color' and 'unfilled_waveform_color' as they are not standard options here
|
243 |
-
}
|
244 |
)
|
245 |
|
246 |
clear_btn = gr.Button("🗑️ Clear Chat")
|
247 |
|
248 |
-
# Event handler for audio input change
|
249 |
audio_input.change(
|
250 |
fn=transcribe_audio_and_chat,
|
251 |
-
inputs=[audio_input, state],
|
252 |
-
|
253 |
-
# 3. audio_input (to clear it), 4. tts_audio_output (for playing bot's voice)
|
254 |
-
outputs=[chatbot, state, audio_input, tts_audio_output]
|
255 |
)
|
256 |
|
257 |
-
# JavaScript (no changes needed for API key part here as it's removed)
|
258 |
-
gr.HTML("""
|
259 |
-
<script>
|
260 |
-
// You can add other useful JS here if needed in the future
|
261 |
-
</script>
|
262 |
-
""")
|
263 |
-
|
264 |
-
# Clear button functionality: resets chatbot and state to empty
|
265 |
-
# Also clear the TTS audio output when chat is cleared
|
266 |
clear_btn.click(lambda: ([], [], None), None, [chatbot, state, tts_audio_output])
|
267 |
|
268 |
-
demo.launch()
|
|
|
|
|
|
|
|
2 |
from openai import OpenAI
|
3 |
import speech_recognition as sr
|
4 |
import os
|
5 |
+
import io
|
6 |
+
import tempfile
|
7 |
+
import scipy.io.wavfile as wavfile
|
8 |
+
import numpy as np
|
9 |
+
import datetime
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Load API key from environment
|
12 |
+
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
13 |
+
OPENAI_STT_MODEL = "whisper-1"
|
14 |
+
OPENAI_CHAT_MODEL = "gpt-3.5-turbo"
|
15 |
+
OPENAI_TTS_MODEL = "tts-1"
|
16 |
|
17 |
system_prompt = """
|
18 |
You are a sophisticated AI voice bot representing Krishnavamshi Thumma. Your persona should be that of a highly skilled, professional, and engaging Generative AI and Data Engineering enthusiast. When responding to questions, embody the following detailed professional identity:
|
|
|
52 |
# Initialize the SpeechRecognition Recognizer
|
53 |
r = sr.Recognizer()
|
54 |
|
|
|
55 |
def transcribe_audio_and_chat(audio_tuple, history):
|
|
|
56 |
if not OPENAI_API_KEY:
|
57 |
+
raise gr.Error("❌ OpenAI API key not found.")
|
58 |
|
|
|
59 |
if history is None:
|
60 |
history = []
|
61 |
|
62 |
+
audio_output_path = None # Default output path to return (for TTS playback)
|
|
|
63 |
|
64 |
if audio_tuple is None:
|
65 |
+
return history, history, None, None
|
|
|
|
|
66 |
|
67 |
samplerate, audio_np_array = audio_tuple
|
68 |
|
69 |
try:
|
|
|
70 |
if audio_np_array.dtype != np.int16:
|
71 |
+
audio_np_array = audio_np_array.astype(np.int16)
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
# Save user audio temporarily for Whisper
|
74 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_audio_file:
|
75 |
+
wavfile.write(temp_audio_file.name, samplerate, audio_np_array)
|
76 |
+
temp_audio_file.flush()
|
77 |
|
78 |
+
# Use OpenAI Whisper STT
|
|
|
|
|
79 |
client = OpenAI(api_key=OPENAI_API_KEY)
|
80 |
+
with open(temp_audio_file.name, "rb") as file:
|
81 |
+
transcript = client.audio.transcriptions.create(
|
82 |
+
model=OPENAI_STT_MODEL,
|
83 |
+
file=file
|
84 |
+
)
|
85 |
+
user_input = transcript.text
|
86 |
+
|
87 |
+
print(f"Transcribed Input: {user_input}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
# Chat Completion
|
90 |
messages_for_openai = [{"role": "system", "content": system_prompt}] + history
|
91 |
messages_for_openai.append({"role": "user", "content": user_input})
|
92 |
|
93 |
+
chat_response = client.chat.completions.create(
|
94 |
model=OPENAI_CHAT_MODEL,
|
95 |
messages=messages_for_openai,
|
96 |
temperature=0.7
|
97 |
)
|
98 |
|
99 |
+
bot_reply = chat_response.choices[0].message.content
|
100 |
+
|
101 |
history.append({"role": "user", "content": user_input})
|
102 |
history.append({"role": "assistant", "content": bot_reply})
|
103 |
+
|
104 |
+
# Generate TTS audio and save to temp file
|
105 |
try:
|
106 |
tts_response = client.audio.speech.create(
|
107 |
+
model=OPENAI_TTS_MODEL,
|
108 |
+
voice="alloy",
|
109 |
input=bot_reply,
|
110 |
+
response_format="mp3"
|
111 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as tts_temp_file:
|
114 |
+
for chunk in tts_response.iter_bytes():
|
115 |
+
tts_temp_file.write(chunk)
|
116 |
+
audio_output_path = tts_temp_file.name
|
117 |
|
118 |
except Exception as tts_e:
|
119 |
+
print(f"Error in TTS: {tts_e}")
|
120 |
+
history.append({"role": "assistant", "content": bot_reply + " (Voice failed to generate.)"})
|
121 |
+
audio_output_path = None
|
|
|
|
|
122 |
|
123 |
+
return history, history, None, audio_output_path
|
|
|
124 |
|
125 |
except Exception as e:
|
126 |
+
print(f"Unexpected error: {e}")
|
127 |
+
raise gr.Error(f"❌ Unexpected error: {str(e)}")
|
|
|
|
|
128 |
|
129 |
+
# Gradio UI
|
130 |
with gr.Blocks(title="Voice Bot: Krishnavamshi Thumma") as demo:
|
131 |
gr.Markdown("## 🎙️ Krishnavamshi Thumma - Voice Assistant")
|
132 |
|
133 |
+
chatbot = gr.Chatbot(type="messages", height=400)
|
134 |
+
state = gr.State([])
|
135 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
audio_input = gr.Audio(
|
137 |
sources=["microphone"],
|
138 |
+
type="numpy",
|
139 |
label="Speak your message here",
|
140 |
+
streaming=False
|
|
|
141 |
)
|
142 |
|
143 |
+
# Output as file path (so Gradio can handle autoplay correctly)
|
144 |
tts_audio_output = gr.Audio(
|
145 |
label="Bot's Voice Response",
|
146 |
+
type="filepath",
|
147 |
+
autoplay=True
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
)
|
149 |
|
150 |
clear_btn = gr.Button("🗑️ Clear Chat")
|
151 |
|
|
|
152 |
audio_input.change(
|
153 |
fn=transcribe_audio_and_chat,
|
154 |
+
inputs=[audio_input, state],
|
155 |
+
outputs=[chatbot, state, audio_input, tts_audio_output]
|
|
|
|
|
156 |
)
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
clear_btn.click(lambda: ([], [], None), None, [chatbot, state, tts_audio_output])
|
159 |
|
160 |
+
demo.launch()
|
161 |
+
|
162 |
+
|
163 |
+
|