File size: 5,290 Bytes
9e41260
889e1fa
 
 
 
d011be0
889e1fa
7bc6887
889e1fa
 
 
 
7bc6887
889e1fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8437f06
 
889e1fa
34ebd65
3ae4583
12ef859
8437f06
 
 
 
26ce970
3ae4583
8437f06
889e1fa
 
 
8437f06
 
3ae4583
595c4b7
3ae4583
889e1fa
 
 
 
 
 
 
 
 
 
 
7bc6887
8437f06
12ef859
 
 
889e1fa
12ef859
 
 
 
d011be0
 
12ef859
8437f06
7bf74d5
12ef859
889e1fa
7bc6887
8437f06
 
889e1fa
 
7bc6887
889e1fa
 
 
d011be0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8437f06
34ebd65
8437f06
fef1314
 
d011be0
 
fef1314
 
 
d011be0
 
 
8437f06
d011be0
 
fef1314
889e1fa
 
7bc6887
889e1fa
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
from moviepy.editor import AudioFileClip

# Get all available voices
async def get_voices():
    voices = await edge_tts.list_voices()
    return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}

# Text to speech functionality
async def text_to_speech(text, voice, rate, pitch):
    if not text.strip():
        return None, gr.Warning("Please enter the text to convert.")
    if not voice:
        return None, gr.Warning("Please select a voice.")
    
    voice_short_name = voice.split(" - ")[0]
    rate_str = f"{rate:+d}%"
    pitch_str = f"{pitch:+d}Hz"
    communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    return tmp_path, None

# Generate SRT file based on user preferences
def generate_srt(words, audio_duration, srt_path, words_per_line, lines_per_paragraph):
    with open(srt_path, 'w', encoding='utf-8') as srt_file:
        segment_duration = audio_duration / (len(words) // lines_per_paragraph)  # Average duration for each segment
        current_time = 0
        
        for i in range(0, len(words), words_per_line * lines_per_paragraph):  # Every segment according to specified preferences
            segment_words = words[i:i + (words_per_line * lines_per_paragraph)]
            lines = [segment_words[j:j + words_per_line] for j in range(0, len(segment_words), words_per_line)]
            lines = [' '.join(line) for line in lines]
            
            start_time = current_time
            end_time = start_time + segment_duration
            
            start_time_str = format_srt_time(start_time)
            end_time_str = format_srt_time(end_time)
            srt_file.write(f"{i // (words_per_line * lines_per_paragraph) + 1}\n{start_time_str} --> {end_time_str}\n")
            srt_file.write('\n'.join(lines) + '\n\n')
            
            current_time += segment_duration  # Update current time for the next segment

    return srt_path

def format_srt_time(seconds):
    millis = int((seconds - int(seconds)) * 1000)
    seconds = int(seconds)
    minutes = seconds // 60
    hours = minutes // 60
    minutes %= 60
    seconds %= 60
    return f"{hours:02}:{minutes:02}:{seconds:02},{millis:03}"

# Text to audio and SRT functionality
async def text_to_audio_and_srt(text, voice, rate, pitch, words_per_line, lines_per_paragraph):
    audio_path, warning = await text_to_speech(text, voice, rate, pitch)
    if warning:
        return None, None, warning

    audio_clip = AudioFileClip(audio_path)
    audio_duration = audio_clip.duration
    
    # Generate SRT file based on the entire text
    base_name = os.path.splitext(audio_path)[0]
    srt_path = f"{base_name}_subtitle.srt"
    words = text.split()
    generate_srt(words, audio_duration, srt_path, words_per_line, lines_per_paragraph)

    return audio_path, srt_path, None

# Gradio interface function
def tts_interface(text, voice, rate, pitch, words_per_line, lines_per_paragraph):
    audio_path, srt_path, warning = asyncio.run(text_to_audio_and_srt(text, voice, rate, pitch, words_per_line, lines_per_paragraph))
    return audio_path, srt_path, warning

# Create Gradio app
async def create_demo():
    voices = await get_voices()
    
    with gr.Blocks() as demo:
        gr.Markdown(
            """
            <h1 style="text-align: center; color: #333;">Text to Speech with Subtitles</h1>
            <p style="text-align: center; color: #555;">Convert your text to natural-sounding speech and generate subtitles (SRT) for your audio.</p>
            """, 
            elem_id="header"
        )

        with gr.Row():
            with gr.Column():
                text_input = gr.Textbox(label="Input Text", lines=5, placeholder="Enter text here...")
                voice_dropdown = gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value="")
                rate_slider = gr.Slider(minimum=-50, maximum=50, value=0, label="Rate Adjustment (%)", step=1)
                pitch_slider = gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1)

                words_per_line = gr.Slider(minimum=8, maximum=12, value=10, label="Words per Line", step=1)
                lines_per_paragraph = gr.Slider(minimum=1, maximum=4, value=2, label="Lines per Paragraph", step=1)
                
                generate_button = gr.Button("Generate Audio and Subtitles", variant="primary")

            with gr.Column():
                output_audio = gr.Audio(label="Generated Audio", type="filepath")
                output_srt = gr.File(label="Generated SRT", file_count="single")
                warning_msg = gr.Markdown(label="Warning", visible=False)

        generate_button.click(
            fn=tts_interface,
            inputs=[text_input, voice_dropdown, rate_slider, pitch_slider, words_per_line, lines_per_paragraph],
            outputs=[output_audio, output_srt, warning_msg]
        )

    return demo

# Run the app
if __name__ == "__main__":
    demo = asyncio.run(create_demo())
    demo.launch()