TextToSpeech / app.py
hivecorp's picture
Update app.py
7ad2a01 verified
raw
history blame
3.99 kB
import gradio as gr
import edge_tts
import asyncio
import tempfile
from moviepy.editor import AudioFileClip
import re
async def get_voices():
voices = await edge_tts.list_voices()
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
async def text_to_speech(text, voice, rate, pitch):
if not text.strip():
return None, gr.Warning("Please enter the text to convert.")
if not voice:
return None, gr.Warning("Please select a voice.")
voice_short_name = voice.split(" - ")[0]
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path, None
def generate_srt(text, audio_duration, max_words_per_line):
# Eliminate extra spaces and split into words
text = re.sub(r'\s+', ' ', text.strip())
words = text.split()
srt_lines = []
current_line = []
total_words = len(words)
for i, word in enumerate(words):
current_line.append(word)
# Create a line if we reach the max words per line or at the end of the text
if len(current_line) >= max_words_per_line or i == total_words - 1:
line_text = ' '.join(current_line)
# Adjust duration proportionally
duration = audio_duration * (len(current_line) / total_words)
start_time = (sum(len(' '.join(srt_lines[j].split()[2:])) for j in range(len(srt_lines))) / total_words) * audio_duration if srt_lines else 0
end_time = start_time + duration
# Formatting time for SRT
start_time_str = f"{int(start_time // 3600):02}:{int((start_time % 3600) // 60):02}:{int(start_time % 60):02},{int((start_time % 1) * 1000):03}"
end_time_str = f"{int(end_time // 3600):02}:{int((end_time % 3600) // 60):02}:{int(end_time % 60):02},{int((end_time % 1) * 1000):03}"
srt_lines.append(f"{len(srt_lines) + 1}\n{start_time_str} --> {end_time_str}\n{line_text}\n")
current_line = []
return ''.join(srt_lines)
def tts_interface(text, voice, rate, pitch, max_words_per_line):
audio_path, warning = asyncio.run(text_to_speech(text, voice, rate, pitch))
if warning:
return None, None, warning
# Calculate audio duration
audio_duration = AudioFileClip(audio_path).duration # Get duration in seconds
# Generate SRT file
srt_content = generate_srt(text, audio_duration, max_words_per_line)
srt_path = audio_path.replace('.mp3', '_subtitle.srt')
with open(srt_path, 'w') as f:
f.write(srt_content)
return audio_path, srt_path, None
async def create_demo():
voices = await get_voices()
demo = gr.Interface(
fn=tts_interface,
inputs=[
gr.Textbox(label="Input Text", lines=5),
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=""),
gr.Slider(minimum=-50, maximum=50, value=0, label="Rate Adjustment (%)", step=1),
gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1),
gr.Slider(minimum=3, maximum=8, value=5, label="Max Words per Line", step=1),
],
outputs=[
gr.Audio(label="Generated Audio", type="filepath"),
gr.File(label="Generated Subtitle (.srt)"),
gr.Markdown(label="Warning", visible=False)
],
title="Edge TTS Text to Speech with SRT",
description="Convert text to speech and generate synchronized subtitles based on speech rate.",
analytics_enabled=False,
allow_flagging=False,
)
return demo
if __name__ == "__main__":
demo = asyncio.run(create_demo())
demo.launch()