File size: 1,714 Bytes
7c31dfd
 
 
 
 
 
170cb41
7c31dfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import gradio as gr
from llama_cpp import Llama

llm = Llama(model_path="model.gguf", n_ctx=8000, n_threads=2, chat_format="chatml")
  
def generate(message, history,temperature=0.3,max_tokens=512):
    system_prompt = """You are a SQL virtual assistant, you will only create queries thinking step by step. Check that the syntax is perfect and don't miss any character. Pay attention to the names of the tables and fields. Do not make up fields that do not exist. I want you to give the query only. Do not speak and do not explain anything. Just provide the queries with no further words."""
    formatted_prompt = [{"role": "system", "content": system_prompt}]
    for user_prompt, bot_response  in history:
        formatted_prompt.append({"role": "user", "content": user_prompt})
        formatted_prompt.append({"role": "assistant", "content": bot_response })
    formatted_prompt.append({"role": "user", "content": message})
    stream_response = llm.create_chat_completion(messages=formatted_prompt, temperature=temperature, max_tokens=max_tokens, stream=True)
    response  = ""
    for chunk in stream_response:
        if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]:
            response  += chunk['choices'][0]["delta"]["content"]
        yield response 

mychatbot = gr.Chatbot(
avatar_images=["user.png", "botnb.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,)
        
iface = gr.ChatInterface(fn=generate, chatbot=mychatbot, retry_btn=None, undo_btn=None)

with gr.Blocks() as demo:
    gr.HTML("<center><h1>Natural SQL</h1></center>")
    iface.render()

demo.queue().launch(show_api=False, server_name="0.0.0.0")