Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,550 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
# TATS
# Copyright (c) Meta Platforms, Inc. All Rights Reserved
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from .attention_vae import MultiHeadAttention
def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True):
n_dims = len(x.shape)
if src_dim < 0:
src_dim = n_dims + src_dim
if dest_dim < 0:
dest_dim = n_dims + dest_dim
assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims
dims = list(range(n_dims))
del dims[src_dim]
permutation = []
ctr = 0
for i in range(n_dims):
if i == dest_dim:
permutation.append(src_dim)
else:
permutation.append(dims[ctr])
ctr += 1
x = x.permute(permutation)
if make_contiguous:
x = x.contiguous()
return x
def silu(x):
return x * torch.sigmoid(x)
class SiLU(nn.Module):
def __init__(self):
super(SiLU, self).__init__()
def forward(self, x):
return silu(x)
def hinge_d_loss(logits_real, logits_fake):
loss_real = torch.mean(F.relu(1. - logits_real))
loss_fake = torch.mean(F.relu(1. + logits_fake))
d_loss = 0.5 * (loss_real + loss_fake)
return d_loss
def vanilla_d_loss(logits_real, logits_fake):
d_loss = 0.5 * (
torch.mean(torch.nn.functional.softplus(-logits_real)) +
torch.mean(torch.nn.functional.softplus(logits_fake)))
return d_loss
def Normalize(in_channels, norm_type='group'):
assert norm_type in ['group', 'batch']
if norm_type == 'group':
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
elif norm_type == 'batch':
return torch.nn.SyncBatchNorm(in_channels)
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, norm_type='group',
padding_type='replicate'):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels, norm_type)
self.conv1 = SamePadConv3d(in_channels, out_channels, kernel_size=3, padding_type=padding_type)
self.dropout = torch.nn.Dropout(dropout)
self.norm2 = Normalize(in_channels, norm_type)
self.conv2 = SamePadConv3d(out_channels, out_channels, kernel_size=3, padding_type=padding_type)
if self.in_channels != self.out_channels:
self.conv_shortcut = SamePadConv3d(in_channels, out_channels, kernel_size=3, padding_type=padding_type)
def forward(self, x):
h = x
h = self.norm1(h)
h = silu(h)
h = self.conv1(h)
h = self.norm2(h)
h = silu(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
x = self.conv_shortcut(x)
return x + h
# Does not support dilation
class SamePadConv3d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True, padding_type='replicate'):
super().__init__()
if isinstance(kernel_size, int):
kernel_size = (kernel_size,) * 3
if isinstance(stride, int):
stride = (stride,) * 3
# assumes that the input shape is divisible by stride
total_pad = tuple([k - s for k, s in zip(kernel_size, stride)])
pad_input = []
for p in total_pad[::-1]: # reverse since F.pad starts from last dim
pad_input.append((p // 2 + p % 2, p // 2))
pad_input = sum(pad_input, tuple())
self.pad_input = pad_input
self.padding_type = padding_type
self.conv = nn.Conv3d(in_channels, out_channels, kernel_size,
stride=stride, padding=0, bias=bias)
self.weight = self.conv.weight
def forward(self, x):
return self.conv(F.pad(x, self.pad_input, mode=self.padding_type))
class SamePadConvTranspose3d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True, padding_type='replicate'):
super().__init__()
if isinstance(kernel_size, int):
kernel_size = (kernel_size,) * 3
if isinstance(stride, int):
stride = (stride,) * 3
total_pad = tuple([k - s for k, s in zip(kernel_size, stride)])
pad_input = []
for p in total_pad[::-1]: # reverse since F.pad starts from last dim
pad_input.append((p // 2 + p % 2, p // 2))
pad_input = sum(pad_input, tuple())
self.pad_input = pad_input
self.padding_type = padding_type
self.convt = nn.ConvTranspose3d(in_channels, out_channels, kernel_size,
stride=stride, bias=bias,
padding=tuple([k - 1 for k in kernel_size]))
def forward(self, x):
return self.convt(F.pad(x, self.pad_input, mode=self.padding_type))
class AxialBlock(nn.Module):
def __init__(self, n_hiddens, n_head):
super().__init__()
kwargs = dict(shape=(0,) * 3, dim_q=n_hiddens,
dim_kv=n_hiddens, n_head=n_head,
n_layer=1, causal=False, attn_type='axial')
self.attn_w = MultiHeadAttention(attn_kwargs=dict(axial_dim=-2),
**kwargs)
self.attn_h = MultiHeadAttention(attn_kwargs=dict(axial_dim=-3),
**kwargs)
self.attn_t = MultiHeadAttention(attn_kwargs=dict(axial_dim=-4),
**kwargs)
def forward(self, x):
x = shift_dim(x, 1, -1)
x = self.attn_w(x, x, x) + self.attn_h(x, x, x) + self.attn_t(x, x, x)
x = shift_dim(x, -1, 1)
return x
class AttentionResidualBlock(nn.Module):
def __init__(self, n_hiddens):
super().__init__()
self.block = nn.Sequential(
Normalize(n_hiddens),
SiLU(),
SamePadConv3d(n_hiddens, n_hiddens // 2, 3, bias=False),
Normalize(n_hiddens // 2),
SiLU(),
SamePadConv3d(n_hiddens // 2, n_hiddens, 1, bias=False),
Normalize(n_hiddens),
SiLU(),
AxialBlock(n_hiddens, 2)
)
def forward(self, x):
return x + self.block(x)
class Encoder(nn.Module):
def __init__(self, n_hiddens, downsample, z_channels, double_z, image_channel=3, norm_type='group',
padding_type='replicate', res_num=1):
super().__init__()
n_times_downsample = np.array([int(math.log2(d)) for d in downsample])
self.conv_blocks = nn.ModuleList()
max_ds = n_times_downsample.max()
self.conv_first = SamePadConv3d(image_channel, n_hiddens, kernel_size=3, padding_type=padding_type)
for i in range(max_ds):
block = nn.Module()
in_channels = n_hiddens * 2 ** i
out_channels = n_hiddens * 2 ** (i + 1)
stride = tuple([2 if d > 0 else 1 for d in n_times_downsample])
stride = list(stride)
stride[0] = 1
stride = tuple(stride)
block.down = SamePadConv3d(in_channels, out_channels, 4, stride=stride, padding_type=padding_type)
block.res = ResBlock(out_channels, out_channels, norm_type=norm_type)
self.conv_blocks.append(block)
n_times_downsample -= 1
self.final_block = nn.Sequential(
Normalize(out_channels, norm_type),
SiLU(),
SamePadConv3d(out_channels, 2 * z_channels if double_z else z_channels,
kernel_size=3,
stride=1,
padding_type=padding_type)
)
self.out_channels = out_channels
def forward(self, x):
h = self.conv_first(x)
for block in self.conv_blocks:
h = block.down(h)
h = block.res(h)
h = self.final_block(h)
return h
class Decoder(nn.Module):
def __init__(self, n_hiddens, upsample, z_channels, image_channel, norm_type='group'):
super().__init__()
n_times_upsample = np.array([int(math.log2(d)) for d in upsample])
max_us = n_times_upsample.max()
in_channels = z_channels
self.conv_blocks = nn.ModuleList()
for i in range(max_us):
block = nn.Module()
in_channels = in_channels if i == 0 else n_hiddens * 2 ** (max_us - i + 1)
out_channels = n_hiddens * 2 ** (max_us - i)
us = tuple([2 if d > 0 else 1 for d in n_times_upsample])
us = list(us)
us[0] = 1
us = tuple(us)
block.up = SamePadConvTranspose3d(in_channels, out_channels, 4, stride=us)
block.res1 = ResBlock(out_channels, out_channels, norm_type=norm_type)
block.res2 = ResBlock(out_channels, out_channels, norm_type=norm_type)
self.conv_blocks.append(block)
n_times_upsample -= 1
self.conv_out = SamePadConv3d(out_channels, image_channel, kernel_size=3)
def forward(self, x):
h = x
for i, block in enumerate(self.conv_blocks):
h = block.up(h)
h = block.res1(h)
h = block.res2(h)
h = self.conv_out(h)
return h
class EncoderRe(nn.Module):
def __init__(self, n_hiddens, downsample, z_channels, double_z, image_channel=3, norm_type='group',
padding_type='replicate', n_res_layers=2):
super().__init__()
# n_times_downsample = np.array([int(math.log2(d)) for d in downsample])
self.conv_blocks = nn.ModuleList()
# max_ds = n_times_downsample.max()
self.conv_first = SamePadConv3d(image_channel, n_hiddens, kernel_size=3, padding_type=padding_type)
for i, step in enumerate(downsample):
block = nn.Module()
in_channels = n_hiddens
out_channels = n_hiddens
stride = [1, downsample[i], downsample[i]]
stride = tuple(stride)
block.down = SamePadConv3d(in_channels, out_channels, 4, stride=stride, padding_type=padding_type)
block.res1 = ResBlock(out_channels, out_channels, norm_type=norm_type)
block.res2 = ResBlock(out_channels, out_channels, norm_type=norm_type)
self.conv_blocks.append(block)
self.res_stack = nn.Sequential(
*[AttentionResidualBlock(out_channels)
for _ in range(n_res_layers)]
)
self.final_block = nn.Sequential(
Normalize(out_channels, norm_type),
SiLU(),
SamePadConv3d(out_channels, 2 * z_channels if double_z else z_channels,
kernel_size=3,
stride=1,
padding_type=padding_type)
)
self.out_channels = out_channels
def forward(self, x):
h = self.conv_first(x)
for block in self.conv_blocks:
h = block.down(h)
h = block.res1(h)
h = block.res2(h)
h = self.res_stack(h)
h = self.final_block(h)
return h
class DecoderRe(nn.Module):
def __init__(self, n_hiddens, upsample, z_channels, image_channel, norm_type='group', padding_type='replicate', n_res_layers=2):
super().__init__()
self.conv_first = SamePadConv3d(z_channels, n_hiddens, kernel_size=3, padding_type=padding_type)
self.res_stack = nn.Sequential(
*[AttentionResidualBlock(n_hiddens)
for _ in range(n_res_layers)]
)
# n_times_upsample = np.array([int(math.log2(d)) for d in upsample])
# max_us = n_times_upsample.max()
# in_channels = n_hiddens
self.conv_blocks = nn.ModuleList()
for i, step in enumerate(upsample):
block = nn.Module()
in_channels = n_hiddens
out_channels = n_hiddens
stride = [1, upsample[i], upsample[i]]
stride = tuple(stride)
block.up = SamePadConvTranspose3d(in_channels, out_channels, 4, stride=stride)
block.res1 = ResBlock(out_channels, out_channels, norm_type=norm_type)
block.res2 = ResBlock(out_channels, out_channels, norm_type=norm_type)
self.conv_blocks.append(block)
self.conv_out = SamePadConv3d(out_channels, image_channel, kernel_size=3)
def forward(self, x):
h = x
h = self.conv_first(h)
h = self.res_stack(h)
for i, block in enumerate(self.conv_blocks):
h = block.up(h)
h = block.res1(h)
h = block.res2(h)
h = self.conv_out(h)
return h
# unit test
if __name__ == '__main__':
encoder = EncoderRe(n_hiddens=320, downsample=[1, 2, 2, 2], z_channels=8, double_z=True, image_channel=96,
norm_type='group', padding_type='replicate')
encoder = encoder.cuda()
en_input = torch.rand(1, 96, 3, 256, 256).cuda()
out = encoder(en_input)
print(out.shape)
mean, logvar = torch.chunk(out, 2, dim=1)
# print(mean.shape)
decoder = DecoderRe(n_hiddens=320, upsample=[2, 2, 2, 1], z_channels=8, image_channel=96,
norm_type='group' )
decoder = decoder.cuda()
out = decoder(mean)
print(out.shape)
# logvar = nn.Parameter(torch.ones(size=()) * 0.0)
# print(logvar)
|