File size: 12,245 Bytes
8ed2f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# Dataloader for training GenHead, modified from EG3D: https://github.com/NVlabs/eg3d

# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.

"""Streaming images and labels from datasets created with dataset_tool.py."""

import os
import sys
import numpy as np
import zipfile
import PIL.Image
import json
import torch
import dnnlib
from training.dataloader.protocols import datum_genhead_pb2 as datum_pb2
import lmdb
import cv2
# try:
#     import pyspng
# except ImportError:
pyspng = None

#----------------------------------------------------------------------------

class Dataset(torch.utils.data.Dataset):
    def __init__(self,
        name,                   # Name of the dataset.
        raw_shape,              # Shape of the raw image data (NCHW).
        max_size    = None,     # Artificially limit the size of the dataset. None = no limit. Applied before xflip.
        use_labels  = False,    # Enable conditioning labels? False = label dimension is zero.
        xflip       = False,    # Artificially double the size of the dataset via x-flips. Applied after max_size.
        random_seed = 0,        # Random seed to use when applying max_size.
    ):
        self._name = name
        self._raw_shape = list(raw_shape)
        self._use_labels = use_labels
        self._raw_labels = None
        self._label_shape = None

        # Apply max_size.
        self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64)
        if (max_size is not None) and (self._raw_idx.size > max_size):
            np.random.RandomState(random_seed).shuffle(self._raw_idx)
            self._raw_idx = np.sort(self._raw_idx[:max_size])

        # Apply xflip.
        self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8)
        if xflip:
            self._raw_idx = np.tile(self._raw_idx, 2)
            self._xflip = np.concatenate([self._xflip, np.ones_like(self._xflip)])

    def _get_raw_labels(self):
        if self._raw_labels is None:
            self._raw_labels = self._load_raw_labels() if self._use_labels else None
            if self._raw_labels is None:
                self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32)
            assert isinstance(self._raw_labels, np.ndarray)
            assert self._raw_labels.shape[0] == self._raw_shape[0]
            assert self._raw_labels.dtype in [np.float32, np.int64]
            if self._raw_labels.dtype == np.int64:
                assert self._raw_labels.ndim == 1
                assert np.all(self._raw_labels >= 0)
            self._raw_labels_std = self._raw_labels.std(0)
        return self._raw_labels

    def close(self): # to be overridden by subclass
        pass

    def _load_raw_image(self, raw_idx): # to be overridden by subclass
        raise NotImplementedError

    def _load_raw_labels(self): # to be overridden by subclass
        raise NotImplementedError

    def __getstate__(self):
        return dict(self.__dict__, _raw_labels=None)

    def __del__(self):
        try:
            self.close()
        except:
            pass

    def __len__(self):
        return self._raw_idx.size

    def __getitem__(self, idx):
        image = self._load_raw_image(self._raw_idx[idx])
        assert isinstance(image, np.ndarray)
        assert list(image.shape) == self.image_shape
        assert image.dtype == np.uint8
        if self._xflip[idx]:
            assert image.ndim == 3 # CHW
            image = image[:, :, ::-1]
        return image.copy(), self.get_label(idx)

    def get_label(self, idx):
        label = self._get_raw_labels()[self._raw_idx[idx]]
        if label.dtype == np.int64:
            onehot = np.zeros(self.label_shape, dtype=np.float32)
            onehot[label] = 1
            label = onehot
        return label.copy()

    def get_details(self, idx):
        d = dnnlib.EasyDict()
        d.raw_idx = int(self._raw_idx[idx])
        d.xflip = (int(self._xflip[idx]) != 0)
        d.raw_label = self._get_raw_labels()[d.raw_idx].copy()
        return d

    def get_label_std(self):
        return self._raw_labels_std

    @property
    def name(self):
        return self._name

    @property
    def image_shape(self):
        return list(self._raw_shape[1:])

    @property
    def num_channels(self):
        assert len(self.image_shape) == 3 # CHW
        return self.image_shape[0]

    @property
    def resolution(self):
        assert len(self.image_shape) == 3 # CHW
        assert self.image_shape[1] == self.image_shape[2]
        return self.image_shape[1]

    @property
    def label_shape(self):
        if self._label_shape is None:
            raw_labels = self._get_raw_labels()
            if raw_labels.dtype == np.int64:
                self._label_shape = [int(np.max(raw_labels)) + 1]
            else:
                self._label_shape = raw_labels.shape[1:]
        return list(self._label_shape)

    @property
    def label_dim(self):
        assert len(self.label_shape) == 1
        return self.label_shape[0]

    @property
    def has_labels(self):
        return any(x != 0 for x in self.label_shape)

    @property
    def has_onehot_labels(self):
        return self._get_raw_labels().dtype == np.int64


class PortraitSynthesisSegLmdbFolderDatasetV2(Dataset):
    def __init__(self,
        path,                   # Path to datalist.
        resolution      = None, # Ensure specific resolution, None = highest available.
        data_type      = "vox2",# Set dataset type, deprecated
        rescale_camera = False, # Rescale camera extrinsics and intrinscs to align with an older version of camera labels
        **super_kwargs,         # Additional arguments for the Dataset base class.
    ):
        self._path = path
        print(self._path)
        self._resolution = resolution
        self._zipfile = None
        self._data_type = data_type
        self.rescale_camera = rescale_camera
        
        # initialize lmdb
        if os.path.isdir(self._path):
            self.db = None
            self.txn = None
            self.num = None
            self.datum = None
        else:
            raise IOError('Path must point to a directory or zip')
        # print('./data/FFHQ_512_50/'.split("/")[-2])
        # print(self._path)
        # print((self._path.split("/")[-2].split("_")[-2]))
        img_size = int(self._path.split("/")[-2].split("_")[-2])
        num = int(self._path.split("/")[-2].split("_")[-1])
        img_shape = [3, img_size, img_size]
        raw_shape = [num] + img_shape
        if resolution is None:
            self._resolution = raw_shape[2]
        name = os.path.splitext(os.path.basename(self._path))[0]
        super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)

    def open_lmdb(self):
        self.db = lmdb.open(self._path, map_size=1024 ** 4, readonly=True, lock=False)
        self.txn = self.db.begin()
        self.num = int(self.txn.get('num_samples'.encode()))
        self.datum = datum_pb2.Datum_genhead()

    def get_details(self, idx):
        d = dnnlib.EasyDict()
        d.raw_idx = int(self._raw_idx[idx])
        d.xflip = (int(self._xflip[idx]) != 0)
        d.raw_label = self._load_raw_labels(d.raw_idx).copy()
        return d

    def get_label_std(self):
        return 0

    @property
    def resolution(self):
        return self._resolution

    @property
    def label_shape(self):
        if self._label_shape is None:
            raw_labels = self._load_raw_labels(0)
            self._label_shape = raw_labels.shape
        return list(self._label_shape)

    @property
    def label_dim(self):
        assert len(self.label_shape) == 1
        return self.label_shape[0]

    @property
    def has_labels(self):
        return any(x != 0 for x in self.label_shape)

    @property
    def has_onehot_labels(self):
        return self._load_raw_labels(0).dtype == np.int64

    def __getstate__(self):
        return dict(super().__getstate__(), _zipfile=None)

    def _load_raw_image(self, raw_idx):
        if self.txn is None:
            self.open_lmdb()
        value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
        self.datum.ParseFromString(value)
        image = np.fromstring(self.datum.image, dtype=np.uint8)
        image = cv2.imdecode(image, cv2.IMREAD_COLOR)
        image = image[:, :, [2, 1, 0]] # bgr -> rgb
        if image.ndim == 2:
            image = image[:, :, np.newaxis] # HW => HWC
        image = image.transpose(2, 0, 1) # HWC => CHW
        return image

    def _load_raw_seg(self, raw_idx):
        if self.txn is None:
            self.open_lmdb()
        value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
        self.datum.ParseFromString(value)
        seg = np.fromstring(self.datum.seg, dtype=np.uint8)
        seg = cv2.imdecode(seg, cv2.IMREAD_COLOR)
        if seg.ndim == 2:
            seg = seg[:, :, np.newaxis] # HW => HWC
        seg = seg.transpose(2, 0, 1) # HWC => CHW
        if seg.shape[0] == 1:
            seg = np.tile(seg, (3, 1, 1))
        return seg

    def _load_raw_labels(self, raw_idx):
        if self.txn is None:
            self.open_lmdb()
        value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
        self.datum.ParseFromString(value)
        labels = np.fromstring(self.datum.labels, dtype=np.float32)
        intrinsics = labels[16:25].reshape(3,3)
        
        if self.rescale_camera:
            # normalize intrinsics
            if self._resolution != intrinsics[0,2]*2:
                intrinsics[:2,:] *= (0.5*self._resolution/intrinsics[0,2])

            intrinsics[0, 0] /= self._resolution
            intrinsics[1, 1] /= self._resolution
            intrinsics[0, 2] /= self._resolution
            intrinsics[1, 2] /= self._resolution       
            
            # rescale extrinsics
            extrinsics = labels[:16].reshape(4,4) # Our face scale is around 0.1~0.2. Multiply by 3 to match the scale of EG3D
            extrinsics[:3,3] *= 3

        return labels

    def get_label(self, idx):
        label = self._load_raw_labels(self._raw_idx[idx])[:25]
        return label.copy()

    def get_shape_param(self, idx):
        label = self._load_raw_labels(self._raw_idx[idx])[25:325]
        return label.copy()

    def get_exp_param(self, idx):
        label = self._load_raw_labels(self._raw_idx[idx])[325:425]
        return label.copy()

    def get_exp_param_w_jaw_pose(self, idx):
        label = self._load_raw_labels(self._raw_idx[idx])
        label = np.concatenate([label[325:425],label[428:431]],axis=0)
        return label.copy()

    def get_pose_param(self, idx):
        label = self._load_raw_labels(self._raw_idx[idx])[425:431]
        return label.copy()

    def get_eye_pose_param(self, idx):
        label = self._load_raw_labels(self._raw_idx[idx])[431:437]
        return label.copy()

    def get_label_all(self,idx):
        c = self.get_label(idx)
        shape_param = self.get_shape_param(idx)
        exp_param = self.get_exp_param(idx)
        pose_param = self.get_pose_param(idx)
        eye_pose_param = self.get_eye_pose_param(idx)
        return c, shape_param, exp_param, pose_param, eye_pose_param

    def __getitem__(self, idx):
        image = self._load_raw_image(self._raw_idx[idx])
        seg = self._load_raw_seg(self._raw_idx[idx])

        assert isinstance(image, np.ndarray)
        assert isinstance(seg, np.ndarray)
        assert list(image.shape) == self.image_shape
        assert seg.shape[1] == self.image_shape[1] and seg.shape[2] == self.image_shape[2]
        assert image.dtype == np.uint8

        return image.copy(), seg.copy(), self.get_label(idx), self.get_shape_param(idx), self.get_exp_param(idx), self.get_pose_param(idx), self.get_eye_pose_param(idx)