Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,245 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
# Dataloader for training GenHead, modified from EG3D: https://github.com/NVlabs/eg3d
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Streaming images and labels from datasets created with dataset_tool.py."""
import os
import sys
import numpy as np
import zipfile
import PIL.Image
import json
import torch
import dnnlib
from training.dataloader.protocols import datum_genhead_pb2 as datum_pb2
import lmdb
import cv2
# try:
# import pyspng
# except ImportError:
pyspng = None
#----------------------------------------------------------------------------
class Dataset(torch.utils.data.Dataset):
def __init__(self,
name, # Name of the dataset.
raw_shape, # Shape of the raw image data (NCHW).
max_size = None, # Artificially limit the size of the dataset. None = no limit. Applied before xflip.
use_labels = False, # Enable conditioning labels? False = label dimension is zero.
xflip = False, # Artificially double the size of the dataset via x-flips. Applied after max_size.
random_seed = 0, # Random seed to use when applying max_size.
):
self._name = name
self._raw_shape = list(raw_shape)
self._use_labels = use_labels
self._raw_labels = None
self._label_shape = None
# Apply max_size.
self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64)
if (max_size is not None) and (self._raw_idx.size > max_size):
np.random.RandomState(random_seed).shuffle(self._raw_idx)
self._raw_idx = np.sort(self._raw_idx[:max_size])
# Apply xflip.
self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8)
if xflip:
self._raw_idx = np.tile(self._raw_idx, 2)
self._xflip = np.concatenate([self._xflip, np.ones_like(self._xflip)])
def _get_raw_labels(self):
if self._raw_labels is None:
self._raw_labels = self._load_raw_labels() if self._use_labels else None
if self._raw_labels is None:
self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32)
assert isinstance(self._raw_labels, np.ndarray)
assert self._raw_labels.shape[0] == self._raw_shape[0]
assert self._raw_labels.dtype in [np.float32, np.int64]
if self._raw_labels.dtype == np.int64:
assert self._raw_labels.ndim == 1
assert np.all(self._raw_labels >= 0)
self._raw_labels_std = self._raw_labels.std(0)
return self._raw_labels
def close(self): # to be overridden by subclass
pass
def _load_raw_image(self, raw_idx): # to be overridden by subclass
raise NotImplementedError
def _load_raw_labels(self): # to be overridden by subclass
raise NotImplementedError
def __getstate__(self):
return dict(self.__dict__, _raw_labels=None)
def __del__(self):
try:
self.close()
except:
pass
def __len__(self):
return self._raw_idx.size
def __getitem__(self, idx):
image = self._load_raw_image(self._raw_idx[idx])
assert isinstance(image, np.ndarray)
assert list(image.shape) == self.image_shape
assert image.dtype == np.uint8
if self._xflip[idx]:
assert image.ndim == 3 # CHW
image = image[:, :, ::-1]
return image.copy(), self.get_label(idx)
def get_label(self, idx):
label = self._get_raw_labels()[self._raw_idx[idx]]
if label.dtype == np.int64:
onehot = np.zeros(self.label_shape, dtype=np.float32)
onehot[label] = 1
label = onehot
return label.copy()
def get_details(self, idx):
d = dnnlib.EasyDict()
d.raw_idx = int(self._raw_idx[idx])
d.xflip = (int(self._xflip[idx]) != 0)
d.raw_label = self._get_raw_labels()[d.raw_idx].copy()
return d
def get_label_std(self):
return self._raw_labels_std
@property
def name(self):
return self._name
@property
def image_shape(self):
return list(self._raw_shape[1:])
@property
def num_channels(self):
assert len(self.image_shape) == 3 # CHW
return self.image_shape[0]
@property
def resolution(self):
assert len(self.image_shape) == 3 # CHW
assert self.image_shape[1] == self.image_shape[2]
return self.image_shape[1]
@property
def label_shape(self):
if self._label_shape is None:
raw_labels = self._get_raw_labels()
if raw_labels.dtype == np.int64:
self._label_shape = [int(np.max(raw_labels)) + 1]
else:
self._label_shape = raw_labels.shape[1:]
return list(self._label_shape)
@property
def label_dim(self):
assert len(self.label_shape) == 1
return self.label_shape[0]
@property
def has_labels(self):
return any(x != 0 for x in self.label_shape)
@property
def has_onehot_labels(self):
return self._get_raw_labels().dtype == np.int64
class PortraitSynthesisSegLmdbFolderDatasetV2(Dataset):
def __init__(self,
path, # Path to datalist.
resolution = None, # Ensure specific resolution, None = highest available.
data_type = "vox2",# Set dataset type, deprecated
rescale_camera = False, # Rescale camera extrinsics and intrinscs to align with an older version of camera labels
**super_kwargs, # Additional arguments for the Dataset base class.
):
self._path = path
print(self._path)
self._resolution = resolution
self._zipfile = None
self._data_type = data_type
self.rescale_camera = rescale_camera
# initialize lmdb
if os.path.isdir(self._path):
self.db = None
self.txn = None
self.num = None
self.datum = None
else:
raise IOError('Path must point to a directory or zip')
# print('./data/FFHQ_512_50/'.split("/")[-2])
# print(self._path)
# print((self._path.split("/")[-2].split("_")[-2]))
img_size = int(self._path.split("/")[-2].split("_")[-2])
num = int(self._path.split("/")[-2].split("_")[-1])
img_shape = [3, img_size, img_size]
raw_shape = [num] + img_shape
if resolution is None:
self._resolution = raw_shape[2]
name = os.path.splitext(os.path.basename(self._path))[0]
super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)
def open_lmdb(self):
self.db = lmdb.open(self._path, map_size=1024 ** 4, readonly=True, lock=False)
self.txn = self.db.begin()
self.num = int(self.txn.get('num_samples'.encode()))
self.datum = datum_pb2.Datum_genhead()
def get_details(self, idx):
d = dnnlib.EasyDict()
d.raw_idx = int(self._raw_idx[idx])
d.xflip = (int(self._xflip[idx]) != 0)
d.raw_label = self._load_raw_labels(d.raw_idx).copy()
return d
def get_label_std(self):
return 0
@property
def resolution(self):
return self._resolution
@property
def label_shape(self):
if self._label_shape is None:
raw_labels = self._load_raw_labels(0)
self._label_shape = raw_labels.shape
return list(self._label_shape)
@property
def label_dim(self):
assert len(self.label_shape) == 1
return self.label_shape[0]
@property
def has_labels(self):
return any(x != 0 for x in self.label_shape)
@property
def has_onehot_labels(self):
return self._load_raw_labels(0).dtype == np.int64
def __getstate__(self):
return dict(super().__getstate__(), _zipfile=None)
def _load_raw_image(self, raw_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
image = np.fromstring(self.datum.image, dtype=np.uint8)
image = cv2.imdecode(image, cv2.IMREAD_COLOR)
image = image[:, :, [2, 1, 0]] # bgr -> rgb
if image.ndim == 2:
image = image[:, :, np.newaxis] # HW => HWC
image = image.transpose(2, 0, 1) # HWC => CHW
return image
def _load_raw_seg(self, raw_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
seg = np.fromstring(self.datum.seg, dtype=np.uint8)
seg = cv2.imdecode(seg, cv2.IMREAD_COLOR)
if seg.ndim == 2:
seg = seg[:, :, np.newaxis] # HW => HWC
seg = seg.transpose(2, 0, 1) # HWC => CHW
if seg.shape[0] == 1:
seg = np.tile(seg, (3, 1, 1))
return seg
def _load_raw_labels(self, raw_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
labels = np.fromstring(self.datum.labels, dtype=np.float32)
intrinsics = labels[16:25].reshape(3,3)
if self.rescale_camera:
# normalize intrinsics
if self._resolution != intrinsics[0,2]*2:
intrinsics[:2,:] *= (0.5*self._resolution/intrinsics[0,2])
intrinsics[0, 0] /= self._resolution
intrinsics[1, 1] /= self._resolution
intrinsics[0, 2] /= self._resolution
intrinsics[1, 2] /= self._resolution
# rescale extrinsics
extrinsics = labels[:16].reshape(4,4) # Our face scale is around 0.1~0.2. Multiply by 3 to match the scale of EG3D
extrinsics[:3,3] *= 3
return labels
def get_label(self, idx):
label = self._load_raw_labels(self._raw_idx[idx])[:25]
return label.copy()
def get_shape_param(self, idx):
label = self._load_raw_labels(self._raw_idx[idx])[25:325]
return label.copy()
def get_exp_param(self, idx):
label = self._load_raw_labels(self._raw_idx[idx])[325:425]
return label.copy()
def get_exp_param_w_jaw_pose(self, idx):
label = self._load_raw_labels(self._raw_idx[idx])
label = np.concatenate([label[325:425],label[428:431]],axis=0)
return label.copy()
def get_pose_param(self, idx):
label = self._load_raw_labels(self._raw_idx[idx])[425:431]
return label.copy()
def get_eye_pose_param(self, idx):
label = self._load_raw_labels(self._raw_idx[idx])[431:437]
return label.copy()
def get_label_all(self,idx):
c = self.get_label(idx)
shape_param = self.get_shape_param(idx)
exp_param = self.get_exp_param(idx)
pose_param = self.get_pose_param(idx)
eye_pose_param = self.get_eye_pose_param(idx)
return c, shape_param, exp_param, pose_param, eye_pose_param
def __getitem__(self, idx):
image = self._load_raw_image(self._raw_idx[idx])
seg = self._load_raw_seg(self._raw_idx[idx])
assert isinstance(image, np.ndarray)
assert isinstance(seg, np.ndarray)
assert list(image.shape) == self.image_shape
assert seg.shape[1] == self.image_shape[1] and seg.shape[2] == self.image_shape[2]
assert image.dtype == np.uint8
return image.copy(), seg.copy(), self.get_label(idx), self.get_shape_param(idx), self.get_exp_param(idx), self.get_pose_param(idx), self.get_eye_pose_param(idx) |