Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,729 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
"""
BSD 3-Clause License
Copyright (c) Soumith Chintala 2016,
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
import torch
from torch import nn
from torch.nn import functional as F
__all__ = ["DeepLabV3Decoder"]
class DeepLabV3Decoder(nn.Sequential):
def __init__(self, in_channels, out_channels=256, atrous_rates=(12, 24, 36)):
super().__init__(
ASPP(in_channels, out_channels, atrous_rates),
nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
# nn.BatchNorm2d(out_channels), #remove bn following https://arxiv.org/abs/2305.02310
nn.ReLU(),
)
self.out_channels = out_channels
def forward(self, *features):
return super().forward(features[-1])
class ASPPConv(nn.Sequential):
def __init__(self, in_channels, out_channels, dilation):
super().__init__(
nn.Conv2d(
in_channels,
out_channels,
kernel_size=3,
padding=dilation,
dilation=dilation,
bias=False,
),
# nn.BatchNorm2d(out_channels), #remove bn following https://arxiv.org/abs/2305.02310
nn.ReLU(),
)
class ASPPSeparableConv(nn.Sequential):
def __init__(self, in_channels, out_channels, dilation):
super().__init__(
SeparableConv2d(
in_channels,
out_channels,
kernel_size=3,
padding=dilation,
dilation=dilation,
bias=False,
),
# nn.BatchNorm2d(out_channels), #remove bn following https://arxiv.org/abs/2305.02310
nn.ReLU(),
)
class ASPPPooling(nn.Sequential):
def __init__(self, in_channels, out_channels):
super().__init__(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
# nn.BatchNorm2d(out_channels), #remove bn following https://arxiv.org/abs/2305.02310
nn.ReLU(),
)
def forward(self, x):
size = x.shape[-2:]
for mod in self:
x = mod(x)
return F.interpolate(x, size=size, mode="bilinear", align_corners=False)
class ASPP(nn.Module):
def __init__(self, in_channels, out_channels, atrous_rates, separable=False):
super(ASPP, self).__init__()
modules = []
modules.append(
nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1, bias=False),
# nn.BatchNorm2d(out_channels), #remove bn following https://arxiv.org/abs/2305.02310
nn.ReLU(),
)
)
rate1, rate2, rate3 = tuple(atrous_rates)
ASPPConvModule = ASPPConv if not separable else ASPPSeparableConv
modules.append(ASPPConvModule(in_channels, out_channels, rate1))
modules.append(ASPPConvModule(in_channels, out_channels, rate2))
modules.append(ASPPConvModule(in_channels, out_channels, rate3))
modules.append(ASPPPooling(in_channels, out_channels))
self.convs = nn.ModuleList(modules)
self.project = nn.Sequential(
nn.Conv2d(5 * out_channels, out_channels, kernel_size=1, bias=False),
# nn.BatchNorm2d(out_channels), #remove bn following https://arxiv.org/abs/2305.02310
nn.ReLU(),
# nn.Dropout(0.5), #remove dropout
)
def forward(self, x):
res = []
for conv in self.convs:
res.append(conv(x))
res = torch.cat(res, dim=1)
return self.project(res)
class SeparableConv2d(nn.Sequential):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
bias=True,
):
dephtwise_conv = nn.Conv2d(
in_channels,
in_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=in_channels,
bias=False,
)
pointwise_conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
bias=bias,
)
super().__init__(dephtwise_conv, pointwise_conv) |