File size: 22,608 Bytes
8ed2f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.

"""
V4:
1. 使用相同的latent code控制两个stylegan (不共享梯度);
2. 正交投影的参数从2D改成了3D,使三次投影的变换一致;
3. 三平面变成四平面;
4. 三平面的顺序调换;
5. 生成嘴部的动态纹理, 和静态纹理融合 (Styleunet)
"""
from os import device_encoding
from turtle import update
import math
import torch
import numpy as np
import torch.nn.functional as F
from pytorch3d.io import load_obj
import cv2
from torchvision.utils import save_image

import dnnlib
from torch_utils import persistence
from training_avatar_texture.networks_stylegan2_next3d import Generator as StyleGAN2Backbone
from training_avatar_texture.networks_stylegan2_styleunet_next3d import Generator as CondStyleGAN2Backbone
from training_avatar_texture.volumetric_rendering.renderer_next3d import ImportanceRenderer
from training_avatar_texture.volumetric_rendering.ray_sampler import RaySampler
from training_avatar_texture.volumetric_rendering.renderer_next3d import Pytorch3dRasterizer, face_vertices, generate_triangles, transform_points, \
    batch_orth_proj, angle2matrix
from training_avatar_texture.volumetric_rendering.renderer_next3d import fill_mouth


@persistence.persistent_class
class TriPlaneGenerator(torch.nn.Module):
    def __init__(self,
                 z_dim,  # Input latent (Z) dimensionality.
                 c_dim,  # Conditioning label (C) dimensionality.
                 w_dim,  # Intermediate latent (W) dimensionality.
                 img_resolution,  # Output resolution.
                 img_channels,  # Number of output color channels.
                 topology_path,  #
                 sr_num_fp16_res=0,
                 mapping_kwargs={},  # Arguments for MappingNetwork.
                 rendering_kwargs={},
                 sr_kwargs={},
                 **synthesis_kwargs,  # Arguments for SynthesisNetwork.
                 ):
        super().__init__()
        self.z_dim = z_dim
        self.c_dim = c_dim
        self.w_dim = w_dim
        self.img_resolution = img_resolution
        self.img_channels = img_channels
        self.topology_path = 'flame_head_template.obj'#topology_path
        self.renderer = ImportanceRenderer()
        self.ray_sampler = RaySampler()
        self.texture_backbone = StyleGAN2Backbone(z_dim, c_dim, w_dim, img_resolution=256, img_channels=32, mapping_kwargs=mapping_kwargs,
                                                  **synthesis_kwargs)  # render neural texture
        self.mouth_backbone = CondStyleGAN2Backbone(z_dim, c_dim, w_dim, img_resolution=256, img_channels=32, in_size=64, final_size=4,
                                                    cond_channels=32, num_cond_res=64, mapping_kwargs=mapping_kwargs, **synthesis_kwargs)
        self.backbone = StyleGAN2Backbone(z_dim, c_dim, w_dim, img_resolution=256, img_channels=32 * 3, mapping_ws=self.texture_backbone.num_ws * 2,
                                          mapping_kwargs=mapping_kwargs, **synthesis_kwargs)
        # debug: use splitted w
        self.superresolution = dnnlib.util.construct_class_by_name(class_name=rendering_kwargs['superresolution_module'], channels=32,
                                                                   img_resolution=img_resolution, sr_num_fp16_res=sr_num_fp16_res,
                                                                   sr_antialias=rendering_kwargs['sr_antialias'], **sr_kwargs)
        self.decoder = OSGDecoder(32, {'decoder_lr_mul': rendering_kwargs.get('decoder_lr_mul', 1), 'decoder_output_dim': 32})
        self.neural_rendering_resolution = 64
        self.rendering_kwargs = rendering_kwargs
        self._last_planes = None
        self.load_lms = True

        # set pytorch3d rasterizer
        self.uv_resolution = 256
        self.rasterizer = Pytorch3dRasterizer(image_size=256)

        verts, faces, aux = load_obj(self.topology_path)
        uvcoords = aux.verts_uvs[None, ...]  # (N, V, 2)
        uvfaces = faces.textures_idx[None, ...]  # (N, F, 3)
        faces = faces.verts_idx[None, ...]

        # faces
        dense_triangles = generate_triangles(self.uv_resolution, self.uv_resolution)
        self.register_buffer('dense_faces', torch.from_numpy(dense_triangles).long()[None, :, :].contiguous())
        self.register_buffer('faces', faces)
        self.register_buffer('raw_uvcoords', uvcoords)

        # eye masks
        mask = cv2.imread('flame_uv_face_eye_mask.png').astype(np.float32) / 255.;
        mask = torch.from_numpy(mask[:, :, 0])[None, None, :, :].contiguous()
        self.uv_face_mask = F.interpolate(mask, [256, 256])

        # mouth mask
        self.fill_mouth = True

        # uv coords
        uvcoords = torch.cat([uvcoords, uvcoords[:, :, 0:1] * 0. + 1.], -1)  # [bz, ntv, 3]
        uvcoords = uvcoords * 2 - 1;
        uvcoords[..., 1] = -uvcoords[..., 1]
        face_uvcoords = face_vertices(uvcoords, uvfaces)
        self.register_buffer('uvcoords', uvcoords)
        self.register_buffer('uvfaces', uvfaces)
        self.register_buffer('face_uvcoords', face_uvcoords)

        self.orth_scale = torch.tensor([[5.0]])
        self.orth_shift = torch.tensor([[0, -0.01, -0.01]])

        # neural blending
        self.neural_blending = CondStyleGAN2Backbone(z_dim, c_dim, w_dim, cond_channels=32, img_resolution=256, img_channels=32, in_size=256,
                                                     final_size=32, num_cond_res=256, mapping_kwargs=mapping_kwargs, **synthesis_kwargs)

    def mapping(self, z, c, truncation_psi=1, truncation_cutoff=None, update_emas=False):
        if self.rendering_kwargs['c_gen_conditioning_zero']:
            c = torch.zeros_like(c)
        c = c[:, :25]  # remove expression labels
        return self.backbone.mapping(z, c * self.rendering_kwargs.get('c_scale', 0), truncation_psi=truncation_psi,
                                     truncation_cutoff=truncation_cutoff, update_emas=update_emas)

    def synthesis(self, ws, c, v, neural_rendering_resolution=None, update_emas=False, cache_backbone=False, use_cached_backbone=False,
                  **synthesis_kwargs):
        # split vertices and landmarks
        if self.load_lms:
            v, lms = v[:, :5023], v[:, 5023:]

        batch_size = ws.shape[0]
        eg3d_ws, texture_ws = ws[:, :self.texture_backbone.num_ws], ws[:, self.texture_backbone.num_ws:]
        cam2world_matrix = c[:, :16].view(-1, 4, 4)
        intrinsics = c[:, 16:25].view(-1, 3, 3)

        if neural_rendering_resolution is None:
            neural_rendering_resolution = self.neural_rendering_resolution
        else:
            self.neural_rendering_resolution = neural_rendering_resolution

        # Create a batch of rays for volume rendering
        ray_origins, ray_directions = self.ray_sampler(cam2world_matrix, intrinsics, neural_rendering_resolution)

        # Create triplanes by running StyleGAN backbone
        N, M, _ = ray_origins.shape
        textures = self.texture_backbone.synthesis(texture_ws, update_emas=update_emas, **synthesis_kwargs)

        # rasterize to three orthogonal views
        rendering_views = [
            [0, 0, 0],
            [0, 90, 0],
            [0, -90, 0],
            [90, 0, 0]
        ]
        rendering_images, alpha_images, uvcoords_images, lm2ds = self.rasterize(v, lms, textures, rendering_views, batch_size, ws.device)

        # generate front mouth masks
        rendering_image_front = rendering_images[0]
        mouths_mask = self.gen_mouth_mask(lm2ds[0])
        rendering_mouth = [rendering_image_front[i:i + 1, :][:, :, m[0]:m[1], m[2]:m[3]] for i, m in enumerate(mouths_mask)]
        rendering_mouth = torch.cat([torch.nn.functional.interpolate(uv, size=(64, 64), mode='bilinear', antialias=True) for uv in rendering_mouth],
                                    0)

        # generate mouth front plane and integrate back to face front plane
        mouths_plane = self.mouth_backbone.synthesis(rendering_mouth, eg3d_ws, update_emas=update_emas, **synthesis_kwargs)
        rendering_stitch = []
        for rendering, m, mouth_plane in zip(rendering_image_front, mouths_mask, mouths_plane):
            rendering = rendering.unsqueeze(0)
            dummy = torch.zeros_like(rendering)
            dummy[:, :] = rendering
            dummy[:, :, m[0]:m[1], m[2]:m[3]] = torch.nn.functional.interpolate(mouth_plane.unsqueeze(0), size=(m[1] - m[0], m[1] - m[0]),
                                                                                mode='bilinear', antialias=True)
            rendering_stitch.append(dummy)
        rendering_stitch = torch.cat(rendering_stitch, 0)
        rendering_stitch = self.neural_blending.synthesis(rendering_stitch, eg3d_ws, update_emas=update_emas, **synthesis_kwargs)

        # generate static triplane
        static_plane = self.backbone.synthesis(eg3d_ws, update_emas=update_emas, **synthesis_kwargs)
        static_plane = static_plane.view(len(static_plane), 3, 32, static_plane.shape[-2], static_plane.shape[-1])

        # blend features of neural texture and tri-plane
        alpha_image = torch.cat(alpha_images, 1).unsqueeze(2)
        rendering_stitch = torch.cat((rendering_stitch, rendering_images[1], rendering_images[2]), 1)
        rendering_stitch = rendering_stitch.view(*static_plane.shape)
        blended_planes = rendering_stitch * alpha_image + static_plane * (1 - alpha_image)

        # Perform volume rendering
        feature_samples, depth_samples, weights_samples = self.renderer(blended_planes, self.decoder, ray_origins, ray_directions,
                                                                        self.rendering_kwargs)  # channels last

        # Reshape into 'raw' neural-rendered image
        H = W = self.neural_rendering_resolution
        feature_image = feature_samples.permute(0, 2, 1).reshape(N, feature_samples.shape[-1], H, W).contiguous()
        depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)

        # Run superresolution to get final image
        rgb_image = feature_image[:, :3]
        sr_image = self.superresolution(rgb_image, feature_image, eg3d_ws, noise_mode=self.rendering_kwargs['superresolution_noise_mode'],
                                        **{k: synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'})

        return {'image': sr_image, 'image_raw': rgb_image, 'image_depth': depth_image}

    def rasterize(self, v, lms, textures, tforms, batch_size, device):
        rendering_images, alpha_images, uvcoords_images, transformed_lms = [], [], [], []

        for tform in tforms:
            v_flip, lms_flip = v.detach().clone(), lms.detach().clone()
            v_flip[..., 1] *= -1;
            lms_flip[..., 1] *= -1
            # rasterize texture to three orthogonal views
            tform = angle2matrix(torch.tensor(tform).reshape(1, -1)).expand(batch_size, -1, -1).to(device)
            transformed_vertices = (torch.bmm(v_flip, tform) + self.orth_shift.to(device)) * self.orth_scale.to(device)
            transformed_vertices = batch_orth_proj(transformed_vertices, torch.tensor([1., 0, 0]).to(device))
            transformed_vertices[:, :, 1:] = -transformed_vertices[:, :, 1:]
            transformed_vertices[:, :, 2] = transformed_vertices[:, :, 2] + 10

            transformed_lm = (torch.bmm(lms_flip, tform) + self.orth_shift.to(device)) * self.orth_scale.to(device)
            transformed_lm = batch_orth_proj(transformed_lm, torch.tensor([1., 0, 0]).to(device))[:, :, :2]
            transformed_lm[:, :, 1:] = -transformed_lm[:, :, 1:]

            faces = self.faces.detach().clone()[..., [0, 2, 1]].expand(batch_size, -1, -1)
            attributes = self.face_uvcoords.detach().clone()[:, :, [0, 2, 1]].expand(batch_size, -1, -1, -1)

            rendering = self.rasterizer(transformed_vertices, faces, attributes, 256, 256)
            alpha_image = rendering[:, -1, :, :][:, None, :, :].detach()
            uvcoords_image = rendering[:, :-1, :, :];
            grid = (uvcoords_image).permute(0, 2, 3, 1)[:, :, :, :2]
            mask_face_eye = F.grid_sample(self.uv_face_mask.expand(batch_size, -1, -1, -1).to(device), grid.detach(), align_corners=False)
            alpha_image = mask_face_eye * alpha_image
            if self.fill_mouth:
                alpha_image = fill_mouth(alpha_image)
            uvcoords_image = mask_face_eye * uvcoords_image
            rendering_image = F.grid_sample(textures, grid.detach(), align_corners=False)

            rendering_images.append(rendering_image)
            alpha_images.append(alpha_image)
            uvcoords_images.append(uvcoords_image)
            transformed_lms.append(transformed_lm)

        rendering_image_side = rendering_images[1] + rendering_images[2]  # concatenate two side-view renderings
        alpha_image_side = (alpha_images[1].bool() | alpha_images[1].bool()).float()
        rendering_images = [rendering_images[0], rendering_image_side, rendering_images[3]]
        alpha_images = [alpha_images[0], alpha_image_side, alpha_images[3]]

        return rendering_images, alpha_images, uvcoords_images, transformed_lms

    def sample(self, coordinates, directions, z, c, v, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
        # Compute RGB features, density for arbitrary 3D coordinates. Mostly used for extracting shapes.
        if self.load_lms:
            v, lms = v[:, :5023], v[:, 5023:]
        ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
        batch_size = ws.shape[0]
        eg3d_ws, texture_ws = ws[:, :self.texture_backbone.num_ws], ws[:, self.texture_backbone.num_ws:]
        textures = self.texture_backbone.synthesis(texture_ws, update_emas=update_emas, **synthesis_kwargs)
        # rasterize to three orthogonal views
        rendering_views = [
            [0, 0, 0],
            [0, 90, 0],
            [0, -90, 0],
            [90, 0, 0]
        ]
        rendering_images, alpha_images, uvcoords_images, lm2ds = self.rasterize(v, lms, textures, rendering_views, batch_size, ws.device)
        # generate front mouth masks
        rendering_image_front = rendering_images[0]
        mouths_mask = self.gen_mouth_mask(lm2ds[0])
        rendering_mouth = [rendering_image_front[i:i + 1, :][:, :, m[0]:m[1], m[2]:m[3]] for i, m in enumerate(mouths_mask)]
        rendering_mouth = torch.cat([torch.nn.functional.interpolate(uv, size=(64, 64), mode='bilinear', antialias=True) for uv in rendering_mouth],
                                    0)

        # generate mouth front plane and integrate back to face front plane
        mouths_plane = self.mouth_backbone.synthesis(rendering_mouth, eg3d_ws, update_emas=update_emas, **synthesis_kwargs)
        rendering_stitch = []
        for rendering, m, mouth_plane in zip(rendering_image_front, mouths_mask, mouths_plane):
            rendering = rendering.unsqueeze(0)
            dummy = torch.zeros_like(rendering)
            dummy[:, :] = rendering
            dummy[:, :, m[0]:m[1], m[2]:m[3]] = torch.nn.functional.interpolate(mouth_plane.unsqueeze(0), size=(m[1] - m[0], m[1] - m[0]),
                                                                                mode='bilinear', antialias=True)
            rendering_stitch.append(dummy)
        rendering_stitch = torch.cat(rendering_stitch, 0)
        rendering_stitch = self.neural_blending.synthesis(rendering_stitch, eg3d_ws, update_emas=update_emas, **synthesis_kwargs)

        # generate static triplane
        static_plane = self.backbone.synthesis(eg3d_ws, update_emas=update_emas, **synthesis_kwargs)
        static_plane = static_plane.view(len(static_plane), 3, 32, static_plane.shape[-2], static_plane.shape[-1])

        # blend features of neural texture and tri-plane
        alpha_image = torch.cat(alpha_images, 1).unsqueeze(2)
        rendering_stitch = torch.cat((rendering_stitch, rendering_images[1], rendering_images[2]), 1)
        rendering_stitch = rendering_stitch.view(*static_plane.shape)
        blended_planes = rendering_stitch * alpha_image + static_plane * (1 - alpha_image)

        return self.renderer.run_model(blended_planes, self.decoder, coordinates, directions, self.rendering_kwargs)

    def sample_mixed(self, coordinates, directions, ws, v, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
        # Same as sample, but expects latent vectors 'ws' instead of Gaussian noise 'z'
        if self.load_lms:
            v, lms = v[:, :5023], v[:, 5023:]
        batch_size = ws.shape[0]
        eg3d_ws, texture_ws = ws[:, :self.texture_backbone.num_ws], ws[:, self.texture_backbone.num_ws:]
        textures = self.texture_backbone.synthesis(texture_ws, update_emas=update_emas, **synthesis_kwargs)

        # rasterize to three orthogonal views
        rendering_views = [
            [0, 0, 0],
            [0, 90, 0],
            [0, -90, 0],
            [90, 0, 0]
        ]
        rendering_images, alpha_images, uvcoords_images, lm2ds = self.rasterize(v, lms, textures, rendering_views, batch_size, ws.device)

        # generate front mouth masks
        rendering_image_front = rendering_images[0]
        mouths_mask = self.gen_mouth_mask(lm2ds[0])
        rendering_mouth = [rendering_image_front[i:i + 1, :][:, :, m[0]:m[1], m[2]:m[3]] for i, m in enumerate(mouths_mask)]
        rendering_mouth = torch.cat([torch.nn.functional.interpolate(uv, size=(64, 64), mode='bilinear', antialias=True) for uv in rendering_mouth],
                                    0)

        # generate mouth front plane and integrate back to face front plane
        mouths_plane = self.mouth_backbone.synthesis(rendering_mouth, eg3d_ws, update_emas=update_emas, **synthesis_kwargs)
        rendering_stitch = []
        for rendering, m, mouth_plane in zip(rendering_image_front, mouths_mask, mouths_plane):
            rendering = rendering.unsqueeze(0)
            dummy = torch.zeros_like(rendering)
            dummy[:, :] = rendering
            dummy[:, :, m[0]:m[1], m[2]:m[3]] = torch.nn.functional.interpolate(mouth_plane.unsqueeze(0), size=(m[1] - m[0], m[1] - m[0]),
                                                                                mode='bilinear', antialias=True)
            rendering_stitch.append(dummy)
        rendering_stitch = torch.cat(rendering_stitch, 0)
        rendering_stitch = self.neural_blending.synthesis(rendering_stitch, eg3d_ws, update_emas=update_emas, **synthesis_kwargs)

        # generate static triplane
        static_plane = self.backbone.synthesis(eg3d_ws, update_emas=update_emas, **synthesis_kwargs)
        static_plane = static_plane.view(len(static_plane), 3, 32, static_plane.shape[-2], static_plane.shape[-1])

        # blend features of neural texture and tri-plane
        alpha_image = torch.cat(alpha_images, 1).unsqueeze(2)
        rendering_stitch = torch.cat((rendering_stitch, rendering_images[1], rendering_images[2]), 1)
        rendering_stitch = rendering_stitch.view(*static_plane.shape)
        blended_planes = rendering_stitch * alpha_image + static_plane * (1 - alpha_image)

        return self.renderer.run_model(blended_planes, self.decoder, coordinates, directions, self.rendering_kwargs)

    def forward(self, z, c, v, truncation_psi=1, truncation_cutoff=None, neural_rendering_resolution=None, update_emas=False, cache_backbone=False,
                use_cached_backbone=False, **synthesis_kwargs):
        # Render a batch of generated images.
        ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
        return self.synthesis(ws, c, v, update_emas=update_emas, neural_rendering_resolution=neural_rendering_resolution,
                              cache_backbone=cache_backbone, use_cached_backbone=use_cached_backbone, **synthesis_kwargs)

    def gen_mouth_mask(self, lms2d):
        lm = lms2d.clone().cpu().numpy()  # lms2d: (4, 68, 2)
        lm[..., 0] = lm[..., 0] * 128 + 128
        lm[..., 1] = lm[..., 1] * 128 + 128
        lm_mouth_outer = lm[:, 48:60]  # left-clockwise

        mouth_left = lm_mouth_outer[:, 0]
        mouth_right = lm_mouth_outer[:, 6]
        mouth_avg = (mouth_left + mouth_right) * 0.5  # (4, 2)
        ups, bottoms = np.max(lm_mouth_outer[..., 0], axis=1, keepdims=True), np.min(lm_mouth_outer[..., 0], axis=1, keepdims=True)
        lefts, rights = np.min(lm_mouth_outer[..., 1], axis=1, keepdims=True), np.max(lm_mouth_outer[..., 1], axis=1, keepdims=True)
        mask_res = np.max(np.concatenate((ups - bottoms, rights - lefts), axis=1), axis=1, keepdims=True) * 1.2
        mask_res = mask_res.astype(int)
        mouth_mask = np.concatenate([(mouth_avg[:, 1:] - mask_res // 2).astype(int), (mouth_avg[:, 1:] + mask_res // 2).astype(int),
                                     (mouth_avg[:, 0:1] - mask_res // 2).astype(int), (mouth_avg[:, 0:1] + mask_res // 2).astype(int)], 1)  # (4, 4)
        return mouth_mask


from training.networks_stylegan2 import FullyConnectedLayer


class OSGDecoder(torch.nn.Module):
    def __init__(self, n_features, options):
        super().__init__()
        self.hidden_dim = 64

        self.net = torch.nn.Sequential(
            FullyConnectedLayer(n_features, self.hidden_dim, lr_multiplier=options['decoder_lr_mul']),
            torch.nn.Softplus(),
            FullyConnectedLayer(self.hidden_dim, 1 + options['decoder_output_dim'], lr_multiplier=options['decoder_lr_mul'])
        )

    def forward(self, sampled_features, ray_directions, sampled_embeddings=None):
        # Aggregate features
        sampled_features = sampled_features.mean(1)
        x = sampled_features

        N, M, C = x.shape
        x = x.view(N * M, C)

        x = self.net(x)
        x = x.view(N, M, -1)
        rgb = torch.sigmoid(x[..., 1:]) * (1 + 2 * 0.001) - 0.001  # Uses sigmoid clamping from MipNeRF
        sigma = x[..., 0:1]
        return {'rgb': rgb, 'sigma': sigma}