File size: 20,845 Bytes
8ed2f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
import os
import sys
import numpy as np
from typing import Optional
import torch
from torch import nn
import torch.utils.model_zoo as model_zoo
from torch_utils import persistence

from segmentation_models_pytorch.base import SegmentationModel
from segmentation_models_pytorch.encoders.resnet import resnet_encoders
from models.deeplabv3.decoder import DeepLabV3Decoder
from models.unet.openaimodel import UNetModel, Upsample, Downsample
from models.mix_transformer.mix_transformer import OverlapPatchEmbed, Block, BlockCross
from timm.models.layers import DropPath, to_2tuple, trunc_normal_

encoders = {}
encoders.update(resnet_encoders)


def get_encoder(name, in_channels=3, depth=5, weights=None, output_stride=32, norm_layer=None, **kwargs):
    try:
        Encoder = encoders[name]["encoder"]
    except KeyError:
        raise KeyError("Wrong encoder name `{}`, supported encoders: {}".format(name, list(encoders.keys())))

    params = encoders[name]["params"]
    params.update(depth=depth)
    params.update(norm_layer=norm_layer)
    encoder = Encoder(**params)

    if weights is not None:
        print(weights)
        # try:
        #     settings = encoders[name]["pretrained_settings"][weights]
        #
        #     ProcessLookupError
        # except KeyError:
        #     raise KeyError(
        #         "Wrong pretrained weights `{}` for encoder `{}`. Available options are: {}".format(
        #             weights,
        #             name,
        #             list(encoders[name]["pretrained_settings"].keys()),
        #         )
        #     )
        # print('model_zoo.load_url(settings["url"])', settings["url"])
        weights = torch.load(weights, map_location="cpu")
        encoder.load_state_dict(weights, strict=False)
    weights_or = "imagenet"
    # pretrained = weights_or is not None
    encoder.set_in_channels(in_channels, pretrained=weights_or is not None)
    if output_stride != 32:
        encoder.make_dilated(output_stride)

    return encoder


def AddCoord(im):
    B, C, H, W = im.shape

    y, x = torch.meshgrid(torch.linspace(-1, 1, H, dtype=torch.float32, device=im.device),
                          torch.linspace(-1, 1, W, dtype=torch.float32, device=im.device), indexing='ij')
    xy = torch.stack([x, y], dim=-1).unsqueeze(0).repeat(B, 1, 1, 1)  # (B,H,W,2)
    xy = xy.permute(0, 3, 1, 2)  # (B,2,H,W)

    ret = torch.cat([im, xy], dim=1)

    return ret


# Global appearance encoder, remove all bn layers, change input dimension to 5, and remove segmentation head following Live3DPortrait: https://arxiv.org/abs/2305.02310
@persistence.persistent_class
class EncoderGlobal(SegmentationModel):
    """DeepLabV3_ implementation from "Rethinking Atrous Convolution for Semantic Image Segmentation"

    Args:
        encoder_name: Name of the classification model that will be used as an encoder (a.k.a backbone)
            to extract features of different spatial resolution
        encoder_depth: A number of stages used in encoder in range [3, 5]. Each stage generate features
            two times smaller in spatial dimensions than previous one (e.g. for depth 0 we will have features
            with shapes [(N, C, H, W),], for depth 1 - [(N, C, H, W), (N, C, H // 2, W // 2)] and so on).
            Default is 5
        encoder_weights: One of **None** (random initialization), **"imagenet"** (pre-training on ImageNet) and
            other pretrained weights (see table with available weights for each encoder_name)
        decoder_channels: A number of convolution filters in ASPP module. Default is 256
        in_channels: A number of input channels for the model, default is 3 (RGB images)
        classes: A number of classes for output mask (or you can think as a number of channels of output mask)
        activation: An activation function to apply after the final convolution layer.
            Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**,
                **callable** and **None**.
            Default is **None**
        upsampling: Final upsampling factor. Default is 8 to preserve input-output spatial shape identity
        aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build
            on top of encoder if **aux_params** is not **None** (default). Supported params:
                - classes (int): A number of classes
                - pooling (str): One of "max", "avg". Default is "avg"
                - dropout (float): Dropout factor in [0, 1)
                - activation (str): An activation function to apply "sigmoid"/"softmax"
                    (could be **None** to return logits)
    Returns:
        ``torch.nn.Module``: **DeepLabV3**

    .. _DeeplabV3:
        https://arxiv.org/abs/1706.05587

    """

    def __init__(
            self,
            encoder_name: str = "resnet34",
            encoder_depth: int = 5,
            encoder_weights: Optional[str] = "imagenet",
            decoder_channels: int = 256,
            in_channels: int = 5,
            activation: Optional[str] = None,
            aux_params: Optional[dict] = None,
            norm_layer: nn.Module = nn.Identity
    ):
        super().__init__()

        self.encoder = get_encoder(
            encoder_name,
            in_channels=in_channels,
            depth=encoder_depth,
            weights=encoder_weights,
            output_stride=8,
            norm_layer=norm_layer
        )

        self.decoder = DeepLabV3Decoder(
            in_channels=self.encoder.out_channels[-1],
            out_channels=decoder_channels,
        )

    def forward(self, x):
        """Sequentially pass `x` trough model`s encoder, decoder and heads"""
        x = AddCoord(x)
        # self.check_input_shape(x)
        features = self.encoder(x)
        decoder_output = self.decoder(*features)

        return decoder_output


# Detail appearance encoder
@persistence.persistent_class
class EncoderDetail(nn.Module):
    def __init__(
            self,
            in_channels: int = 5
    ):
        super().__init__()

        self.encoder = nn.Sequential(
            nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            nn.Conv2d(64, 96, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            nn.Conv2d(96, 96, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            nn.Conv2d(96, 96, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            nn.Conv2d(96, 96, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
        )

        for m in self.encoder.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")

    def forward(self, x):

        x = AddCoord(x)
        output = self.encoder(x)

        return output


# Canonicalization and reenactment module
@persistence.persistent_class
class EncoderCanonical(nn.Module):
    def __init__(self, img_size=64, patch_size=3, in_chans=512, embed_dims=1024, mot_dims=512, mot_dims_hidden=512,
                 H_y=8, W_y=8, num_heads=4, mlp_ratios=2, qkv_bias=True, qk_scale=None, drop_rate=0.,
                 attn_drop_rate=0., drop_path_rate=0., num_blocks_neutral=3, num_blocks_motion=3,
                 norm_layer=nn.LayerNorm,
                 sr_ratios=1, mapping_layers=0):
        super().__init__()
        self.num_blocks_neutral = num_blocks_neutral
        self.num_blocks_motion = num_blocks_motion
        self.mapping_layers = mapping_layers
        self.H_y = H_y
        self.W_y = W_y

        # mapping net for motion feature
        if mapping_layers > 0:
            self.maps = nn.ModuleList([])
            for i in range(mapping_layers):
                in_dims = mot_dims if i == 0 else mot_dims_hidden
                self.maps.append(nn.Linear(in_dims, mot_dims_hidden, bias=True))
                self.maps.append(nn.LeakyReLU(negative_slope=0.01, inplace=True))

            self.maps_neutral = nn.ModuleList([])
            for i in range(mapping_layers):
                in_dims = mot_dims if i == 0 else mot_dims_hidden
                self.maps_neutral.append(nn.Linear(in_dims, mot_dims_hidden, bias=True))
                self.maps_neutral.append(nn.LeakyReLU(negative_slope=0.01, inplace=True))
        else:
            self.maps = None
            self.maps_neutral = None
            mot_dims_hidden = mot_dims

        self.proj_y_neutral = nn.Linear(mot_dims_hidden, H_y * W_y * embed_dims, bias=True)
        self.proj_y = nn.Linear(mot_dims_hidden, H_y * W_y * embed_dims, bias=True)

        # patch_embed
        self.patch_embed = OverlapPatchEmbed(img_size=img_size, patch_size=patch_size, stride=2, in_chans=in_chans,
                                             embed_dim=embed_dims)

        # canonicalization blocks
        self.trans_blocks_neutral = nn.ModuleList([BlockCross(
            dim=embed_dims, dim_y=mot_dims_hidden, H_y=H_y, W_y=W_y, num_heads=num_heads, mlp_ratio=mlp_ratios,
            qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=drop_path_rate, norm_layer=norm_layer,
            sr_ratio=sr_ratios)
            for i in range(num_blocks_neutral)])

        # reenactment blocks
        self.trans_blocks_motion = nn.ModuleList([BlockCross(
            dim=embed_dims, dim_y=mot_dims_hidden, H_y=H_y, W_y=W_y, num_heads=num_heads, mlp_ratio=mlp_ratios,
            qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=drop_path_rate, norm_layer=norm_layer,
            sr_ratio=sr_ratios)
            for i in range(num_blocks_motion)])

        self.pixelshuffle = nn.PixelShuffle(upscale_factor=2)

        self.convs_1 = nn.Sequential(
            nn.Conv2d(3 * 128, 128, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            nn.Conv2d(128, 96, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            nn.Conv2d(96, 256, kernel_size=3, stride=1, padding=1)
        )

        self.convs = nn.Sequential(
            nn.UpsamplingBilinear2d(scale_factor=2),
            nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.UpsamplingBilinear2d(scale_factor=2),
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 96, kernel_size=3, stride=1, padding=1))

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, np.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def freeze_patch_emb(self):
        self.patch_embed.requires_grad = False

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed'}  # has pos_embed may be better

    def forward_features(self, x, x_r, y, y_x, scale=1.):
        B = x.shape[0]
        outs = []

        if self.maps is not None:
            for layer in self.maps:
                y = layer(y)

        if self.maps_neutral is not None:
            for layer in self.maps_neutral:
                y_x = layer(y_x)

        y = self.proj_y(y).reshape(B, self.H_y * self.W_y, -1)
        y_x = self.proj_y_neutral(y_x).reshape(B, self.H_y * self.W_y, -1)

        # trans blocks
        x_r = self.convs_1(x_r)
        x = torch.cat([x, x_r], dim=1)
        x, H, W = self.patch_embed(x)

        # neutralize the face
        for i, blk in enumerate(self.trans_blocks_neutral):
            x = blk(x, y_x, H, W, scale=scale)

        # animate the face
        for i, blk in enumerate(self.trans_blocks_motion):
            x = blk(x, y, H, W, scale=scale)

        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()

        x = self.pixelshuffle(x)

        outs.append(x)
        # conv blocks
        x = self.convs(x)  # 256 256 96
        outs.append(x)

        return outs

    def forward(self, x, x_r, y, y_x, scale=1.):
        x = self.forward_features(x, x_r, y, y_x, scale=scale)

        return x


# Triplane decoder
@persistence.persistent_class
class DecoderTriplane(nn.Module):
    def __init__(self, img_size=256, patch_size=3, embed_dims=1024,
                 num_heads=2, mlp_ratios=2, qkv_bias=True, qk_scale=None, drop_rate=0.,
                 attn_drop_rate=0., drop_path_rate=0., num_blocks=1, norm_layer=nn.LayerNorm,
                 sr_ratios=2):
        super().__init__()
        self.num_blocks = num_blocks

        self.convs1 = nn.Sequential(
            nn.Conv2d(192, 256, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
        )

        # patch_embed
        self.patch_embed = OverlapPatchEmbed(img_size=img_size, patch_size=patch_size, stride=2, in_chans=128,
                                             embed_dim=embed_dims)

        # transformer encoder
        self.trans_blocks = nn.ModuleList([Block(
            dim=embed_dims, num_heads=num_heads, mlp_ratio=mlp_ratios, qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=drop_path_rate, norm_layer=norm_layer,
            sr_ratio=sr_ratios)
            for i in range(num_blocks)])

        self.pixelshuffle = nn.PixelShuffle(upscale_factor=2)

        self.convs2 = nn.Sequential(
            nn.Conv2d(352, 256, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            # nn.Conv2d(128, 96, kernel_size=3, stride=1, padding=1)
        )

        self.conv_last = nn.Conv2d(128, 96, kernel_size=3, stride=1, padding=1)

        self.convs3 = nn.Sequential(
            nn.Conv2d(192, 256, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            # nn.Conv2d(128, 96, kernel_size=3, stride=1, padding=1)
        )

        self.conv_last_2 = nn.Conv2d(128, 96, kernel_size=3, stride=1, padding=1)

        self.apply(self._init_weights)
        self.conv_last.apply(self._init_weights_last)

    def _init_weights_last(self, m):
        if isinstance(m, nn.Conv2d):
            m.weight.data.normal_(0, 0.15)
            if m.bias is not None:
                m.bias.data.zero_()

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, np.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def freeze_patch_emb(self):
        self.patch_embed.requires_grad = False

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed'}  # has pos_embed may be better

    def forward(self, x_global, x_detail, x_tri):

        x = torch.cat([x_global, x_detail], dim=1)  # [B,C,H,W]
        B = x.shape[0]

        # convs1
        x = self.convs1(x)

        # trans blocks
        x, H, W = self.patch_embed(x)
        for i, blk in enumerate(self.trans_blocks):
            x = blk(x, H, W)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        x = self.pixelshuffle(x)

        x = torch.cat([x, x_global], dim=1)

        # convs2
        x = self.convs2(x)
        x = self.conv_last(x)

        # conv_final
        x = torch.cat([x, x_tri], dim=1)
        x = self.convs3(x)
        x = self.conv_last_2(x)
        return x


@persistence.persistent_class
class EncoderBG(nn.Module):
    def __init__(
            self,
            in_channels=5,
            out_channels=32,
    ):
        super().__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels

        self.input_conv = nn.Sequential(
            nn.Conv2d(in_channels, 64, kernel_size=3, stride=2, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
        )  # 128

        self.down_conv_1 = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            Downsample(64, True, dims=2, out_channels=128)
        )  # 64

        self.down_conv_2 = nn.Sequential(
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            Downsample(128, True, dims=2, out_channels=256)
        )  # 32

        self.down_conv_3 = nn.Sequential(
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            Downsample(256, True, dims=2, out_channels=512)
        )  # 16

        self.middle = nn.Sequential(
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
        )

        self.up_conv_1 = nn.Sequential(
            nn.Conv2d(1024, 256, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            Upsample(256, True, dims=2, out_channels=256)
        )  # 32

        self.up_conv_2 = nn.Sequential(
            nn.Conv2d(512, 128, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            Upsample(128, True, dims=2, out_channels=128)
        )  # 64

        self.up_conv_3 = nn.Sequential(
            nn.Conv2d(256, 64, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            Upsample(64, True, dims=2, out_channels=64)
        )  # 128

        self.up_conv_4 = nn.Sequential(
            nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            Upsample(64, True, dims=2, out_channels=64)
        )  # 256

        self.out_conv = nn.Conv2d(64, out_channels, kernel_size=3, stride=1, padding=1)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, np.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x):

        x = AddCoord(x)

        h1 = self.input_conv(x)
        h2 = self.down_conv_1(h1)
        h3 = self.down_conv_2(h2)
        h4 = self.down_conv_3(h3)

        h = self.middle(h4)

        x = self.up_conv_1(torch.cat([h, h4], 1))
        x = self.up_conv_2(torch.cat([x, h3], 1))
        x = self.up_conv_3(torch.cat([x, h2], 1))
        x = self.up_conv_4(torch.cat([x, h1], 1))
        output = self.out_conv(x)

        return output