刘虹雨
update
8ed2f16
import os
import time
from mmcv import Registry, build_from_cfg
from torch.utils.data import DataLoader
from DiT_VAE.diffusion.data.transforms import get_transform
from DiT_VAE.diffusion.utils.logger import get_root_logger
DATASETS = Registry('datasets')
DATA_ROOT = '/cache/data'
def set_data_root(data_root):
global DATA_ROOT
DATA_ROOT = data_root
def get_data_path(data_dir):
if os.path.isabs(data_dir):
return data_dir
global DATA_ROOT
return os.path.join(DATA_ROOT, data_dir)
def build_dataset_triplane(cfg, resolution=256, **kwargs):
logger = get_root_logger()
dataset_type = cfg.get('type')
logger.info(f"Constructing dataset {dataset_type}...")
t = time.time()
dataset = build_from_cfg(cfg, DATASETS, default_args=dict( image_size=resolution, **kwargs))
logger.info(f"Dataset {dataset_type} constructed. time: {(time.time() - t):.2f} s, length: {len(dataset)} ")
return dataset
def build_dataset(cfg, resolution=224, **kwargs):
logger = get_root_logger()
dataset_type = cfg.get('type')
logger.info(f"Constructing dataset {dataset_type}...")
t = time.time()
transform = cfg.pop('transform', 'default_train')
transform = get_transform(transform, resolution)
dataset = build_from_cfg(cfg, DATASETS, default_args=dict(transform=transform, resolution=resolution, **kwargs))
logger.info(f"Dataset {dataset_type} constructed. time: {(time.time() - t):.2f} s, length (use/ori): {len(dataset)}/{dataset.ori_imgs_nums}")
return dataset
def build_dataloader(dataset, batch_size=256, num_workers=2, shuffle=True, **kwargs):
return (
DataLoader(
dataset,
batch_sampler=kwargs['batch_sampler'],
num_workers=num_workers,
pin_memory=True,
)
if 'batch_sampler' in kwargs
else DataLoader(
dataset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=num_workers,
pin_memory=True,
**kwargs
)
)