刘虹雨
update
8ed2f16
"""SAMPLING ONLY."""
import torch
import numpy as np
from DiT_VAE.diffusion.model.sa_solver import NoiseScheduleVP, model_wrapper, SASolver
from .model import gaussian_diffusion as gd
class SASolverSampler(object):
def __init__(self, model,
noise_schedule="linear",
diffusion_steps=1000,
device='cpu',
):
super().__init__()
self.model = model
self.device = device
to_torch = lambda x: x.clone().detach().to(torch.float32).to(device)
betas = torch.tensor(gd.get_named_beta_schedule(noise_schedule, diffusion_steps))
alphas = 1.0 - betas
self.register_buffer('alphas_cumprod', to_torch(np.cumprod(alphas, axis=0)))
def register_buffer(self, name, attr):
if type(attr) == torch.Tensor and attr.device != torch.device("cuda"):
attr = attr.to(torch.device("cuda"))
setattr(self, name, attr)
@torch.no_grad()
def sample(self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0., mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1., unconditional_conditioning=None, model_kwargs=None, **kwargs):
if model_kwargs is None:
model_kwargs = {}
if conditioning is not None:
if isinstance(conditioning, dict):
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
if cbs != batch_size:
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
elif conditioning.shape[0] != batch_size:
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
# sampling
C, H, W = shape
size = (batch_size, C, H, W)
device = self.device
img = torch.randn(size, device=device) if x_T is None else x_T
ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
model_fn = model_wrapper(
self.model,
ns,
model_type="noise",
guidance_type="classifier-free",
condition=conditioning,
unconditional_condition=unconditional_conditioning,
guidance_scale=unconditional_guidance_scale,
model_kwargs=model_kwargs,
)
sasolver = SASolver(model_fn, ns, algorithm_type="data_prediction")
tau_t = lambda t: eta if 0.2 <= t <= 0.8 else 0
x = sasolver.sample(mode='few_steps', x=img, tau=tau_t, steps=S, skip_type='time', skip_order=1, predictor_order=2, corrector_order=2, pc_mode='PEC', return_intermediate=False)
return x.to(device), None