Spaces:
Running
on
Zero
Running
on
Zero
"""SAMPLING ONLY.""" | |
import torch | |
import numpy as np | |
from DiT_VAE.diffusion.model.sa_solver import NoiseScheduleVP, model_wrapper, SASolver | |
from .model import gaussian_diffusion as gd | |
class SASolverSampler(object): | |
def __init__(self, model, | |
noise_schedule="linear", | |
diffusion_steps=1000, | |
device='cpu', | |
): | |
super().__init__() | |
self.model = model | |
self.device = device | |
to_torch = lambda x: x.clone().detach().to(torch.float32).to(device) | |
betas = torch.tensor(gd.get_named_beta_schedule(noise_schedule, diffusion_steps)) | |
alphas = 1.0 - betas | |
self.register_buffer('alphas_cumprod', to_torch(np.cumprod(alphas, axis=0))) | |
def register_buffer(self, name, attr): | |
if type(attr) == torch.Tensor and attr.device != torch.device("cuda"): | |
attr = attr.to(torch.device("cuda")) | |
setattr(self, name, attr) | |
def sample(self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0., mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1., unconditional_conditioning=None, model_kwargs=None, **kwargs): | |
if model_kwargs is None: | |
model_kwargs = {} | |
if conditioning is not None: | |
if isinstance(conditioning, dict): | |
cbs = conditioning[list(conditioning.keys())[0]].shape[0] | |
if cbs != batch_size: | |
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") | |
elif conditioning.shape[0] != batch_size: | |
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") | |
# sampling | |
C, H, W = shape | |
size = (batch_size, C, H, W) | |
device = self.device | |
img = torch.randn(size, device=device) if x_T is None else x_T | |
ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod) | |
model_fn = model_wrapper( | |
self.model, | |
ns, | |
model_type="noise", | |
guidance_type="classifier-free", | |
condition=conditioning, | |
unconditional_condition=unconditional_conditioning, | |
guidance_scale=unconditional_guidance_scale, | |
model_kwargs=model_kwargs, | |
) | |
sasolver = SASolver(model_fn, ns, algorithm_type="data_prediction") | |
tau_t = lambda t: eta if 0.2 <= t <= 0.8 else 0 | |
x = sasolver.sample(mode='few_steps', x=img, tau=tau_t, steps=S, skip_type='time', skip_order=1, predictor_order=2, corrector_order=2, pc_mode='PEC', return_intermediate=False) | |
return x.to(device), None |