Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils.checkpoint import checkpoint | |
def tensor_slice(x, begin, size): | |
assert all([b >= 0 for b in begin]) | |
size = [l - b if s == -1 else s | |
for s, b, l in zip(size, begin, x.shape)] | |
assert all([s >= 0 for s in size]) | |
slices = [slice(b, b + s) for b, s in zip(begin, size)] | |
return x[slices] | |
# reshapes tensor start from dim i (inclusive) | |
# to dim j (exclusive) to the desired shape | |
# e.g. if x.shape = (b, thw, c) then | |
# view_range(x, 1, 2, (t, h, w)) returns | |
# x of shape (b, t, h, w, c) | |
def view_range(x, i, j, shape): | |
shape = tuple(shape) | |
n_dims = len(x.shape) | |
if i < 0: | |
i = n_dims + i | |
if j is None: | |
j = n_dims | |
elif j < 0: | |
j = n_dims + j | |
assert 0 <= i < j <= n_dims | |
x_shape = x.shape | |
target_shape = x_shape[:i] + shape + x_shape[j:] | |
return x.view(target_shape) | |
def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True): | |
n_dims = len(x.shape) | |
if src_dim < 0: | |
src_dim = n_dims + src_dim | |
if dest_dim < 0: | |
dest_dim = n_dims + dest_dim | |
assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims | |
dims = list(range(n_dims)) | |
del dims[src_dim] | |
permutation = [] | |
ctr = 0 | |
for i in range(n_dims): | |
if i == dest_dim: | |
permutation.append(src_dim) | |
else: | |
permutation.append(dims[ctr]) | |
ctr += 1 | |
x = x.permute(permutation) | |
if make_contiguous: | |
x = x.contiguous() | |
return x | |
class AttentionStack(nn.Module): | |
def __init__( | |
self, shape, embd_dim, n_head, n_layer, dropout, | |
attn_type, attn_dropout, class_cond_dim, frame_cond_shape, | |
): | |
super().__init__() | |
self.shape = shape | |
self.embd_dim = embd_dim | |
self.use_frame_cond = frame_cond_shape is not None | |
self.right_shift = RightShift(embd_dim) | |
self.pos_embd = AddBroadcastPosEmbed( | |
shape=shape, embd_dim=embd_dim | |
) | |
self.attn_nets = nn.ModuleList( | |
[ | |
AttentionBlock( | |
shape=shape, | |
embd_dim=embd_dim, | |
n_head=n_head, | |
n_layer=n_layer, | |
dropout=dropout, | |
attn_type=attn_type, | |
attn_dropout=attn_dropout, | |
class_cond_dim=class_cond_dim, | |
frame_cond_shape=frame_cond_shape | |
) | |
for i in range(n_layer) | |
] | |
) | |
def forward(self, x, cond, decode_step, decode_idx): | |
""" | |
Args | |
------ | |
x: (b, d1, d2, ..., dn, embd_dim) | |
cond: a dictionary of conditioning tensors | |
(below is used only when sampling for fast decoding) | |
decode: the enumerated rasterscan order of the current idx being sampled | |
decode_step: a tuple representing the current idx being sampled | |
""" | |
x = self.right_shift(x, decode_step) | |
x = self.pos_embd(x, decode_step, decode_idx) | |
for net in self.attn_nets: | |
x = net(x, cond, decode_step, decode_idx) | |
return x | |
class AttentionBlock(nn.Module): | |
def __init__(self, shape, embd_dim, n_head, n_layer, dropout, | |
attn_type, attn_dropout, class_cond_dim, frame_cond_shape): | |
super().__init__() | |
self.use_frame_cond = frame_cond_shape is not None | |
self.pre_attn_norm = LayerNorm(embd_dim, class_cond_dim) | |
self.post_attn_dp = nn.Dropout(dropout) | |
self.attn = MultiHeadAttention(shape, embd_dim, embd_dim, n_head, | |
n_layer, causal=True, attn_type=attn_type, | |
attn_kwargs=dict(attn_dropout=attn_dropout)) | |
if frame_cond_shape is not None: | |
enc_len = np.prod(frame_cond_shape[:-1]) | |
self.pre_enc_norm = LayerNorm(embd_dim, class_cond_dim) | |
self.post_enc_dp = nn.Dropout(dropout) | |
self.enc_attn = MultiHeadAttention(shape, embd_dim, frame_cond_shape[-1], | |
n_head, n_layer, attn_type='full', | |
attn_kwargs=dict(attn_dropout=0.), causal=False) | |
self.pre_fc_norm = LayerNorm(embd_dim, class_cond_dim) | |
self.post_fc_dp = nn.Dropout(dropout) | |
self.fc_block = nn.Sequential( | |
nn.Linear(in_features=embd_dim, out_features=embd_dim * 4), | |
GeLU2(), | |
nn.Linear(in_features=embd_dim * 4, out_features=embd_dim), | |
) | |
def forward(self, x, cond, decode_step, decode_idx): | |
h = self.pre_attn_norm(x, cond) | |
if self.training: | |
h = checkpoint(self.attn, h, h, h, decode_step, decode_idx) | |
else: | |
h = self.attn(h, h, h, decode_step, decode_idx) | |
h = self.post_attn_dp(h) | |
x = x + h | |
if self.use_frame_cond: | |
h = self.pre_enc_norm(x, cond) | |
if self.training: | |
h = checkpoint(self.enc_attn, h, cond['frame_cond'], cond['frame_cond'], | |
decode_step, decode_idx) | |
else: | |
h = self.enc_attn(h, cond['frame_cond'], cond['frame_cond'], | |
decode_step, decode_idx) | |
h = self.post_enc_dp(h) | |
x = x + h | |
h = self.pre_fc_norm(x, cond) | |
if self.training: | |
h = checkpoint(self.fc_block, h) | |
else: | |
h = self.fc_block(h) | |
h = self.post_fc_dp(h) | |
x = x + h | |
return x | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, shape, dim_q, dim_kv, n_head, n_layer, | |
causal, attn_type, attn_kwargs): | |
super().__init__() | |
self.causal = causal | |
self.shape = shape | |
self.d_k = dim_q // n_head | |
self.d_v = dim_kv // n_head | |
self.n_head = n_head | |
self.w_qs = nn.Linear(dim_q, n_head * self.d_k, bias=False) # q | |
self.w_qs.weight.data.normal_(std=1.0 / np.sqrt(dim_q)) | |
self.w_ks = nn.Linear(dim_kv, n_head * self.d_k, bias=False) # k | |
self.w_ks.weight.data.normal_(std=1.0 / np.sqrt(dim_kv)) | |
self.w_vs = nn.Linear(dim_kv, n_head * self.d_v, bias=False) # v | |
self.w_vs.weight.data.normal_(std=1.0 / np.sqrt(dim_kv)) | |
self.fc = nn.Linear(n_head * self.d_v, dim_q, bias=True) # c | |
self.fc.weight.data.normal_(std=1.0 / np.sqrt(dim_q * n_layer)) | |
if attn_type == 'full': | |
self.attn = FullAttention(shape, causal, **attn_kwargs) | |
elif attn_type == 'axial': | |
assert not causal, 'causal axial attention is not supported' | |
self.attn = AxialAttention(len(shape), **attn_kwargs) | |
elif attn_type == 'sparse': | |
self.attn = SparseAttention(shape, n_head, causal, **attn_kwargs) | |
self.cache = None | |
def forward(self, q, k, v, decode_step=None, decode_idx=None): | |
""" Compute multi-head attention | |
Args | |
q, k, v: a [b, d1, ..., dn, c] tensor or | |
a [b, 1, ..., 1, c] tensor if decode_step is not None | |
Returns | |
The output after performing attention | |
""" | |
# compute k, q, v | |
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head | |
q = view_range(self.w_qs(q), -1, None, (n_head, d_k)) | |
k = view_range(self.w_ks(k), -1, None, (n_head, d_k)) | |
v = view_range(self.w_vs(v), -1, None, (n_head, d_v)) | |
# b x n_head x seq_len x d | |
# (b, *d_shape, n_head, d) -> (b, n_head, *d_shape, d) | |
q = shift_dim(q, -2, 1) | |
k = shift_dim(k, -2, 1) | |
v = shift_dim(v, -2, 1) | |
# fast decoding | |
if decode_step is not None: | |
if decode_step == 0: | |
if self.causal: | |
k_shape = (q.shape[0], n_head, *self.shape, self.d_k) | |
v_shape = (q.shape[0], n_head, *self.shape, self.d_v) | |
self.cache = dict(k=torch.zeros(k_shape, dtype=k.dtype, device=q.device), | |
v=torch.zeros(v_shape, dtype=v.dtype, device=q.device)) | |
else: | |
# cache only once in the non-causal case | |
self.cache = dict(k=k.clone(), v=v.clone()) | |
if self.causal: | |
idx = (slice(None, None), slice(None, None), *[slice(i, i+ 1) for i in decode_idx]) | |
self.cache['k'][idx] = k | |
self.cache['v'][idx] = v | |
k, v = self.cache['k'], self.cache['v'] | |
a = self.attn(q, k, v, decode_step, decode_idx) | |
# (b, *d_shape, n_head, d) -> (b, *d_shape, n_head * d) | |
a = shift_dim(a, 1, -2).flatten(start_dim=-2) | |
a = self.fc(a) # (b x seq_len x embd_dim) | |
return a | |
############## Attention ####################### | |
class FullAttention(nn.Module): | |
def __init__(self, shape, causal, attn_dropout): | |
super().__init__() | |
self.causal = causal | |
self.attn_dropout = attn_dropout | |
seq_len = np.prod(shape) | |
if self.causal: | |
self.register_buffer('mask', torch.tril(torch.ones(seq_len, seq_len))) | |
def forward(self, q, k, v, decode_step, decode_idx): | |
mask = self.mask if self.causal else None | |
if decode_step is not None and mask is not None: | |
mask = mask[[decode_step]] | |
old_shape = q.shape[2:-1] | |
q = q.flatten(start_dim=2, end_dim=-2) | |
k = k.flatten(start_dim=2, end_dim=-2) | |
v = v.flatten(start_dim=2, end_dim=-2) | |
out = scaled_dot_product_attention(q, k, v, mask=mask, | |
attn_dropout=self.attn_dropout, | |
training=self.training) | |
return view_range(out, 2, 3, old_shape) | |
class AxialAttention(nn.Module): | |
def __init__(self, n_dim, axial_dim): | |
super().__init__() | |
if axial_dim < 0: | |
axial_dim = 2 + n_dim + 1 + axial_dim | |
else: | |
axial_dim += 2 # account for batch, head, dim | |
self.axial_dim = axial_dim | |
def forward(self, q, k, v, decode_step, decode_idx): | |
q = shift_dim(q, self.axial_dim, -2).flatten(end_dim=-3) | |
k = shift_dim(k, self.axial_dim, -2).flatten(end_dim=-3) | |
v = shift_dim(v, self.axial_dim, -2) | |
old_shape = list(v.shape) | |
v = v.flatten(end_dim=-3) | |
out = scaled_dot_product_attention(q, k, v, training=self.training) | |
out = out.view(*old_shape) | |
out = shift_dim(out, -2, self.axial_dim) | |
return out | |
class SparseAttention(nn.Module): | |
ops = dict() | |
attn_mask = dict() | |
block_layout = dict() | |
def __init__(self, shape, n_head, causal, num_local_blocks=4, block=32, | |
attn_dropout=0.): # does not use attn_dropout | |
super().__init__() | |
self.causal = causal | |
self.shape = shape | |
self.sparsity_config = StridedSparsityConfig(shape=shape, n_head=n_head, | |
causal=causal, block=block, | |
num_local_blocks=num_local_blocks) | |
if self.shape not in SparseAttention.block_layout: | |
SparseAttention.block_layout[self.shape] = self.sparsity_config.make_layout() | |
if causal and self.shape not in SparseAttention.attn_mask: | |
SparseAttention.attn_mask[self.shape] = self.sparsity_config.make_sparse_attn_mask() | |
def get_ops(self): | |
try: | |
from deepspeed.ops.sparse_attention import MatMul, Softmax | |
except: | |
raise Exception('Error importing deepspeed. Please install using `DS_BUILD_SPARSE_ATTN=1 pip install deepspeed`') | |
if self.shape not in SparseAttention.ops: | |
sparsity_layout = self.sparsity_config.make_layout() | |
sparse_dot_sdd_nt = MatMul(sparsity_layout, | |
self.sparsity_config.block, | |
'sdd', | |
trans_a=False, | |
trans_b=True) | |
sparse_dot_dsd_nn = MatMul(sparsity_layout, | |
self.sparsity_config.block, | |
'dsd', | |
trans_a=False, | |
trans_b=False) | |
sparse_softmax = Softmax(sparsity_layout, self.sparsity_config.block) | |
SparseAttention.ops[self.shape] = (sparse_dot_sdd_nt, | |
sparse_dot_dsd_nn, | |
sparse_softmax) | |
return SparseAttention.ops[self.shape] | |
def forward(self, q, k, v, decode_step, decode_idx): | |
if self.training and self.shape not in SparseAttention.ops: | |
self.get_ops() | |
SparseAttention.block_layout[self.shape] = SparseAttention.block_layout[self.shape].to(q) | |
if self.causal: | |
SparseAttention.attn_mask[self.shape] = SparseAttention.attn_mask[self.shape].to(q).type_as(q) | |
attn_mask = SparseAttention.attn_mask[self.shape] if self.causal else None | |
old_shape = q.shape[2:-1] | |
q = q.flatten(start_dim=2, end_dim=-2) | |
k = k.flatten(start_dim=2, end_dim=-2) | |
v = v.flatten(start_dim=2, end_dim=-2) | |
if decode_step is not None: | |
mask = self.sparsity_config.get_non_block_layout_row(SparseAttention.block_layout[self.shape], decode_step) | |
out = scaled_dot_product_attention(q, k, v, mask=mask, training=self.training) | |
else: | |
if q.shape != k.shape or k.shape != v.shape: | |
raise Exception('SparseAttention only support self-attention') | |
sparse_dot_sdd_nt, sparse_dot_dsd_nn, sparse_softmax = self.get_ops() | |
scaling = float(q.shape[-1]) ** -0.5 | |
attn_output_weights = sparse_dot_sdd_nt(q, k) | |
if attn_mask is not None: | |
attn_output_weights = attn_output_weights.masked_fill(attn_mask == 0, | |
float('-inf')) | |
attn_output_weights = sparse_softmax( | |
attn_output_weights, | |
scale=scaling | |
) | |
out = sparse_dot_dsd_nn(attn_output_weights, v) | |
return view_range(out, 2, 3, old_shape) | |
class StridedSparsityConfig(object): | |
""" | |
Strided Sparse configuration specified in https://arxiv.org/abs/1904.10509 that | |
generalizes to arbitrary dimensions | |
""" | |
def __init__(self, shape, n_head, causal, block, num_local_blocks): | |
self.n_head = n_head | |
self.shape = shape | |
self.causal = causal | |
self.block = block | |
self.num_local_blocks = num_local_blocks | |
assert self.num_local_blocks >= 1, 'Must have at least 1 local block' | |
assert self.seq_len % self.block == 0, 'seq len must be divisible by block size' | |
self._block_shape = self._compute_block_shape() | |
self._block_shape_cum = self._block_shape_cum_sizes() | |
def seq_len(self): | |
return np.prod(self.shape) | |
def num_blocks(self): | |
return self.seq_len // self.block | |
def set_local_layout(self, layout): | |
num_blocks = self.num_blocks | |
for row in range(0, num_blocks): | |
end = min(row + self.num_local_blocks, num_blocks) | |
for col in range( | |
max(0, row - self.num_local_blocks), | |
(row + 1 if self.causal else end)): | |
layout[:, row, col] = 1 | |
return layout | |
def set_global_layout(self, layout): | |
num_blocks = self.num_blocks | |
n_dim = len(self._block_shape) | |
for row in range(num_blocks): | |
assert self._to_flattened_idx(self._to_unflattened_idx(row)) == row | |
cur_idx = self._to_unflattened_idx(row) | |
# no strided attention over last dim | |
for d in range(n_dim - 1): | |
end = self._block_shape[d] | |
for i in range(0, (cur_idx[d] + 1 if self.causal else end)): | |
new_idx = list(cur_idx) | |
new_idx[d] = i | |
new_idx = tuple(new_idx) | |
col = self._to_flattened_idx(new_idx) | |
layout[:, row, col] = 1 | |
return layout | |
def make_layout(self): | |
layout = torch.zeros((self.n_head, self.num_blocks, self.num_blocks), dtype=torch.int64) | |
layout = self.set_local_layout(layout) | |
layout = self.set_global_layout(layout) | |
return layout | |
def make_sparse_attn_mask(self): | |
block_layout = self.make_layout() | |
assert block_layout.shape[1] == block_layout.shape[2] == self.num_blocks | |
num_dense_blocks = block_layout.sum().item() | |
attn_mask = torch.ones(num_dense_blocks, self.block, self.block) | |
counter = 0 | |
for h in range(self.n_head): | |
for i in range(self.num_blocks): | |
for j in range(self.num_blocks): | |
elem = block_layout[h, i, j].item() | |
if elem == 1: | |
assert i >= j | |
if i == j: # need to mask within block on diagonals | |
attn_mask[counter] = torch.tril(attn_mask[counter]) | |
counter += 1 | |
assert counter == num_dense_blocks | |
return attn_mask.unsqueeze(0) | |
def get_non_block_layout_row(self, block_layout, row): | |
block_row = row // self.block | |
block_row = block_layout[:, [block_row]] # n_head x 1 x n_blocks | |
block_row = block_row.repeat_interleave(self.block, dim=-1) | |
block_row[:, :, row + 1:] = 0. | |
return block_row | |
############# Helper functions ########################## | |
def _compute_block_shape(self): | |
n_dim = len(self.shape) | |
cum_prod = 1 | |
for i in range(n_dim - 1, -1, -1): | |
cum_prod *= self.shape[i] | |
if cum_prod > self.block: | |
break | |
assert cum_prod % self.block == 0 | |
new_shape = (*self.shape[:i], cum_prod // self.block) | |
assert np.prod(new_shape) == np.prod(self.shape) // self.block | |
return new_shape | |
def _block_shape_cum_sizes(self): | |
bs = np.flip(np.array(self._block_shape)) | |
return tuple(np.flip(np.cumprod(bs)[:-1])) + (1,) | |
def _to_flattened_idx(self, idx): | |
assert len(idx) == len(self._block_shape), f"{len(idx)} != {len(self._block_shape)}" | |
flat_idx = 0 | |
for i in range(len(self._block_shape)): | |
flat_idx += idx[i] * self._block_shape_cum[i] | |
return flat_idx | |
def _to_unflattened_idx(self, flat_idx): | |
assert flat_idx < np.prod(self._block_shape) | |
idx = [] | |
for i in range(len(self._block_shape)): | |
idx.append(flat_idx // self._block_shape_cum[i]) | |
flat_idx %= self._block_shape_cum[i] | |
return tuple(idx) | |
################ Spatiotemporal broadcasted positional embeddings ############### | |
class AddBroadcastPosEmbed(nn.Module): | |
def __init__(self, shape, embd_dim, dim=-1): | |
super().__init__() | |
assert dim in [-1, 1] # only first or last dim supported | |
self.shape = shape | |
self.n_dim = n_dim = len(shape) | |
self.embd_dim = embd_dim | |
self.dim = dim | |
assert embd_dim % n_dim == 0, f"{embd_dim} % {n_dim} != 0" | |
self.emb = nn.ParameterDict({ | |
f'd_{i}': nn.Parameter(torch.randn(shape[i], embd_dim // n_dim) * 0.01 | |
if dim == -1 else | |
torch.randn(embd_dim // n_dim, shape[i]) * 0.01) | |
for i in range(n_dim) | |
}) | |
def forward(self, x, decode_step=None, decode_idx=None): | |
embs = [] | |
for i in range(self.n_dim): | |
e = self.emb[f'd_{i}'] | |
if self.dim == -1: | |
# (1, 1, ..., 1, self.shape[i], 1, ..., -1) | |
e = e.view(1, *((1,) * i), self.shape[i], *((1,) * (self.n_dim - i - 1)), -1) | |
e = e.expand(1, *self.shape, -1) | |
else: | |
e = e.view(1, -1, *((1,) * i), self.shape[i], *((1,) * (self.n_dim - i - 1))) | |
e = e.expand(1, -1, *self.shape) | |
embs.append(e) | |
embs = torch.cat(embs, dim=self.dim) | |
if decode_step is not None: | |
embs = tensor_slice(embs, [0, *decode_idx, 0], | |
[x.shape[0], *(1,) * self.n_dim, x.shape[-1]]) | |
return x + embs | |
################# Helper Functions ################################### | |
def scaled_dot_product_attention(q, k, v, mask=None, attn_dropout=0., training=True): | |
# Performs scaled dot-product attention over the second to last dimension dn | |
# (b, n_head, d1, ..., dn, d) | |
attn = torch.matmul(q, k.transpose(-1, -2)) | |
attn = attn / np.sqrt(q.shape[-1]) | |
if mask is not None: | |
attn = attn.masked_fill(mask == 0, float('-inf')) | |
attn_float = F.softmax(attn, dim=-1) | |
attn = attn_float.type_as(attn) # b x n_head x d1 x ... x dn x d | |
attn = F.dropout(attn, p=attn_dropout, training=training) | |
a = torch.matmul(attn, v) # b x n_head x d1 x ... x dn x d | |
return a | |
class RightShift(nn.Module): | |
def __init__(self, embd_dim): | |
super().__init__() | |
self.embd_dim = embd_dim | |
self.sos = nn.Parameter(torch.FloatTensor(embd_dim).normal_(std=0.02), requires_grad=True) | |
def forward(self, x, decode_step): | |
if decode_step is not None and decode_step > 0: | |
return x | |
x_shape = list(x.shape) | |
x = x.flatten(start_dim=1, end_dim=-2) # (b, seq_len, embd_dim) | |
sos = torch.ones(x_shape[0], 1, self.embd_dim, dtype=torch.float32).to(self.sos) * self.sos | |
sos = sos.type_as(x) | |
x = torch.cat([sos, x[:, :-1, :]], axis=1) | |
x = x.view(*x_shape) | |
return x | |
class GeLU2(nn.Module): | |
def forward(self, x): | |
return (1.702 * x).sigmoid() * x | |
class LayerNorm(nn.Module): | |
def __init__(self, embd_dim, class_cond_dim): | |
super().__init__() | |
self.conditional = class_cond_dim is not None | |
if self.conditional: | |
self.w = nn.Linear(class_cond_dim, embd_dim, bias=False) | |
nn.init.constant_(self.w.weight.data, 1. / np.sqrt(class_cond_dim)) | |
self.wb = nn.Linear(class_cond_dim, embd_dim, bias=False) | |
else: | |
self.g = nn.Parameter(torch.ones(embd_dim, dtype=torch.float32), requires_grad=True) | |
self.b = nn.Parameter(torch.zeros(embd_dim, dtype=torch.float32), requires_grad=True) | |
def forward(self, x, cond): | |
if self.conditional: # (b, cond_dim) | |
g = 1 + self.w(cond['class_cond']).view(x.shape[0], *(1,)*(len(x.shape)-2), x.shape[-1]) # (b, ..., embd_dim) | |
b = self.wb(cond['class_cond']).view(x.shape[0], *(1,)*(len(x.shape)-2), x.shape[-1]) | |
else: | |
g = self.g # (embd_dim,) | |
b = self.b | |
x_float = x.float() | |
mu = x_float.mean(dim=-1, keepdims=True) | |
s = (x_float - mu).square().mean(dim=-1, keepdims=True) | |
x_float = (x_float - mu) * (1e-5 + s.rsqrt()) # (b, ..., embd_dim) | |
x_float = x_float * g + b | |
x = x_float.type_as(x) | |
return x |