刘虹雨
update
8ed2f16
import logging
import time, os
import numpy as np
from PIL import Image
from einops import rearrange
from omegaconf import OmegaConf
import torch
import torchvision
import pytorch_lightning as pl
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.utilities.distributed import rank_zero_only
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.utilities import rank_zero_info
from pytorch_lightning.callbacks import ModelCheckpoint, Callback, LearningRateMonitor
# ---------------------------------------------------------------------------------
class ImageLogger(Callback):
def __init__(self, batch_frequency, max_images, clamp=True, increase_log_steps=True,
rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
fps=10, log_to_tblogger=True,
):
super().__init__()
self.rescale = rescale
self.batch_freq = batch_frequency
self.max_images = max_images
if int((pl.__version__).split('.')[1])>=7:
self.logger_log_images = {
pl.loggers.CSVLogger: self._testtube,
}
else:
self.logger_log_images = {
pl.loggers.TestTubeLogger: self._testtube,
}
self.log_steps = [2 ** n for n in range(int(np.log2(self.batch_freq)) + 1)]
if not increase_log_steps:
self.log_steps = [self.batch_freq]
self.clamp = clamp
self.disabled = disabled
self.log_on_batch_idx = log_on_batch_idx
self.log_first_step = log_first_step
self.log_to_tblogger = log_to_tblogger
self.save_fps = fps
@rank_zero_only
def _testtube(self, pl_module, images, batch_idx, split):
""" log images and videos to tensorboard """
for k in images:
tag = f"{split}/{k}"
if images[k].dim() == 5:
video = images[k]
n = video.shape[0]
video = video.permute(2, 0, 1, 3, 4)
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(np.sqrt(n))) for framesheet in video]
grid = torch.stack(frame_grids, dim=0)
grid = (grid + 1.0) / 2.0
grid = grid.unsqueeze(dim=0)
pl_module.logger.experiment.add_video(
tag, grid,
global_step=pl_module.global_step)
else:
grid = torchvision.utils.make_grid(images[k])
grid = (grid + 1.0) / 2.0
pl_module.logger.experiment.add_image(
tag, grid,
global_step=pl_module.global_step)
@rank_zero_only
def log_local(self, save_dir, split, images,
global_step, current_epoch, batch_idx, rank_idx):
""" save images and videos from images dict """
root = os.path.join(save_dir, "images", split)
os.makedirs(root, exist_ok=True)
def save_img_grid(grid, path, rescale):
if rescale:
grid = (grid + 1.0) / 2.0
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
grid = grid.numpy()
grid = (grid * 255).astype(np.uint8)
os.makedirs(os.path.split(path)[0], exist_ok=True)
Image.fromarray(grid).save(path)
fps = images.pop('fps', None)
fs = images.pop('frame_stride', None)
for k in images:
img = images[k]
if isinstance(img, list) and isinstance(img[0], str):
# a batch of captions
filename = "string_{}_gs-{:06}_e-{:06}_b-{:06}_r-{:02}.txt".format(
k,
global_step,
current_epoch,
batch_idx,
rank_idx,
)
path = os.path.join(root, filename)
with open(path, 'w') as f:
for i, txt in enumerate(img):
f.write(f'idx={i}, txt={txt}\n')
f.close()
elif img.dim() == 5:
# save video grids
video = img # b,c,t,h,w
n = video.shape[0]
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(np.sqrt(n))) for framesheet in video] # [3, grid_h, grid_w]
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [T, 3, grid_h, grid_w]
if self.rescale:
grid = (grid + 1.0) / 2.0
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, 3, grid_h, grid_w] -> [T, grid_h, grid_w, 3]
filename = "video_{}_gs-{:06}_e-{:06}_b-{:06}_r-{:02}.mp4".format(
k,
global_step,
current_epoch,
batch_idx,
rank_idx,
)
filename = filename.split('.mp4')[0] + f'_fps{fps}.mp4' if fps is not None else filename
filename = filename.split('.mp4')[0] + f'_fs{fs}.mp4' if fs is not None else filename
path = os.path.join(root, filename)
print('Save video ...')
torchvision.io.write_video(path, grid, fps=self.save_fps, video_codec='h264', options={'crf': '10'})
print('Finish!')
# save frame sheet
video_frames = rearrange(img, 'b c t h w -> (b t) c h w')
t = img.shape[2]
grid = torchvision.utils.make_grid(video_frames, nrow=t)
filename = "framesheet_{}_gs-{:06}_e-{:06}_b-{:06}_r-{:02}.jpg".format(
k,
global_step,
current_epoch,
batch_idx,
rank_idx,
)
path = os.path.join(root, filename)
print('Save framesheet ...')
save_img_grid(grid, path, self.rescale)
print('Finish!')
else:
grid = torchvision.utils.make_grid(img, nrow=4)
filename = "{}_gs-{:06}_e-{:06}_b-{:06}_r-{:02}.jpg".format(
k,
global_step,
current_epoch,
batch_idx,
rank_idx,
)
path = os.path.join(root, filename)
print('Save image grid ...')
save_img_grid(grid, path, self.rescale)
print('Finish!')
@rank_zero_only
def log_img(self, pl_module, batch, batch_idx, split="train", rank=0):
""" generate images, then save and log to tensorboard """
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
if (self.check_frequency(check_idx) and
hasattr(pl_module, "log_images") and
callable(pl_module.log_images) and
self.max_images > 0):
logger = type(pl_module.logger)
is_train = pl_module.training
if is_train:
pl_module.eval()
torch.cuda.empty_cache()
with torch.no_grad():
log_func = pl_module.log_videos if hasattr(pl_module, 'is_video') and pl_module.is_video else pl_module.log_images
images = log_func(batch, split=split)
torch.cuda.empty_cache()
# process images
for k in images:
if hasattr(images[k], 'shape'):
N = min(images[k].shape[0], self.max_images)
images[k] = images[k][:N]
if isinstance(images[k], torch.Tensor):
images[k] = images[k].detach().cpu()
if self.clamp:
images[k] = torch.clamp(images[k], -1., 1.)
print("Log local ...")
self.log_local(pl_module.logger.save_dir, split, images,
pl_module.global_step, pl_module.current_epoch,
batch_idx, rank)
if self.log_to_tblogger:
print("Log images to logger ...")
logger_log_images = self.logger_log_images.get(logger, lambda *args, **kwargs: None)
logger_log_images(pl_module, images, pl_module.global_step, split)
print('Finish!')
if is_train:
pl_module.train()
def check_frequency(self, check_idx):
if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and (
check_idx > 0 or self.log_first_step):
try:
self.log_steps.pop(0)
except IndexError as e:
print(e)
pass
return True
return False
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=None):
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
self.log_img(pl_module, batch, batch_idx, split="train", rank=trainer.global_rank)
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=None):
if not self.disabled and pl_module.global_step > 0:
self.log_img(pl_module, batch, batch_idx, split="val", rank=trainer.global_rank)
if hasattr(pl_module, 'calibrate_grad_norm'):
if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0:
self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
# ---------------------------------------------------------------------------------
class CUDACallback(Callback):
def on_train_epoch_start(self, trainer, pl_module):
# Reset the memory use counter
# lightning update
if int((pl.__version__).split('.')[1])>=7:
gpu_index = trainer.strategy.root_device.index
else:
gpu_index = trainer.root_gpu
torch.cuda.reset_peak_memory_stats(gpu_index)
torch.cuda.synchronize(gpu_index)
self.start_time = time.time()
def on_train_epoch_end(self, trainer, pl_module):
if int((pl.__version__).split('.')[1])>=7:
gpu_index = trainer.strategy.root_device.index
else:
gpu_index = trainer.root_gpu
torch.cuda.synchronize(gpu_index)
max_memory = torch.cuda.max_memory_allocated(gpu_index) / 2 ** 20
epoch_time = time.time() - self.start_time
try:
max_memory = trainer.training_type_plugin.reduce(max_memory)
epoch_time = trainer.training_type_plugin.reduce(epoch_time)
rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds")
rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB")
except AttributeError:
pass
# ---------------------------------------------------------------------------------
# for lower lighting
class SetupCallback_low(Callback):
def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config, auto_resume, save_ptl_log=False):
super().__init__()
self.resume = resume
self.now = now
self.logdir = logdir
self.ckptdir = ckptdir
self.cfgdir = cfgdir
self.config = config
self.lightning_config = lightning_config
self.auto_resume = auto_resume
self.save_ptl_log = save_ptl_log
def on_keyboard_interrupt(self, trainer, pl_module):
if trainer.global_rank == 0:
print("Summoning checkpoint.")
ckpt_path = os.path.join(self.ckptdir, "last_summoning.ckpt")
trainer.save_checkpoint(ckpt_path)
# for old version lightning
def on_pretrain_routine_start(self, trainer, pl_module):
if trainer.global_rank == 0:
# Create logdirs and save configs
os.makedirs(self.logdir, exist_ok=True)
os.makedirs(self.ckptdir, exist_ok=True)
os.makedirs(self.cfgdir, exist_ok=True)
if self.save_ptl_log:
logger = logging.getLogger("pytorch_lightning")
logger.addHandler(logging.FileHandler(os.path.join(self.logdir, "ptl_log.log")))
if "callbacks" in self.lightning_config:
if 'metrics_over_trainsteps_checkpoint' in self.lightning_config['callbacks']:
os.makedirs(os.path.join(self.ckptdir, 'trainstep_checkpoints'), exist_ok=True)
print("Project config")
print(OmegaConf.to_yaml(self.config))
OmegaConf.save(self.config,
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)))
print("Lightning config")
print(OmegaConf.to_yaml(self.lightning_config))
OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}),
os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)))
else:
pass
# for higher lighting
class SetupCallback_high(Callback):
def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config, auto_resume, save_ptl_log=False):
super().__init__()
self.resume = resume
self.now = now
self.logdir = logdir
self.ckptdir = ckptdir
self.cfgdir = cfgdir
self.config = config
self.lightning_config = lightning_config
self.auto_resume = auto_resume
self.save_ptl_log = save_ptl_log
def on_keyboard_interrupt(self, trainer, pl_module):
if trainer.global_rank == 0:
print("Summoning checkpoint.")
ckpt_path = os.path.join(self.ckptdir, "last_summoning.ckpt")
trainer.save_checkpoint(ckpt_path)
# RuntimeError: The `Callback.on_pretrain_routine_start` hook was removed in v1.8. Please use `Callback.on_fit_start` instead.
def on_fit_start(self, trainer, pl_module):
if trainer.global_rank == 0:
# Create logdirs and save configs
os.makedirs(self.logdir, exist_ok=True)
os.makedirs(self.ckptdir, exist_ok=True)
os.makedirs(self.cfgdir, exist_ok=True)
if self.save_ptl_log:
logger = logging.getLogger("pytorch_lightning")
logger.addHandler(logging.FileHandler(os.path.join(self.logdir, "ptl_log.log")))
if "callbacks" in self.lightning_config:
if 'metrics_over_trainsteps_checkpoint' in self.lightning_config['callbacks']:
os.makedirs(os.path.join(self.ckptdir, 'trainstep_checkpoints'), exist_ok=True)
print("Project config")
print(OmegaConf.to_yaml(self.config))
OmegaConf.save(self.config,
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)))
print("Lightning config")
print(OmegaConf.to_yaml(self.lightning_config))
OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}),
os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)))