Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
import time, os | |
import numpy as np | |
from PIL import Image | |
from einops import rearrange | |
from omegaconf import OmegaConf | |
import torch | |
import torchvision | |
import pytorch_lightning as pl | |
from pytorch_lightning.callbacks import Callback | |
from pytorch_lightning.utilities.distributed import rank_zero_only | |
from pytorch_lightning.callbacks import Callback | |
from pytorch_lightning.utilities import rank_zero_info | |
from pytorch_lightning.callbacks import ModelCheckpoint, Callback, LearningRateMonitor | |
# --------------------------------------------------------------------------------- | |
class ImageLogger(Callback): | |
def __init__(self, batch_frequency, max_images, clamp=True, increase_log_steps=True, | |
rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False, | |
fps=10, log_to_tblogger=True, | |
): | |
super().__init__() | |
self.rescale = rescale | |
self.batch_freq = batch_frequency | |
self.max_images = max_images | |
if int((pl.__version__).split('.')[1])>=7: | |
self.logger_log_images = { | |
pl.loggers.CSVLogger: self._testtube, | |
} | |
else: | |
self.logger_log_images = { | |
pl.loggers.TestTubeLogger: self._testtube, | |
} | |
self.log_steps = [2 ** n for n in range(int(np.log2(self.batch_freq)) + 1)] | |
if not increase_log_steps: | |
self.log_steps = [self.batch_freq] | |
self.clamp = clamp | |
self.disabled = disabled | |
self.log_on_batch_idx = log_on_batch_idx | |
self.log_first_step = log_first_step | |
self.log_to_tblogger = log_to_tblogger | |
self.save_fps = fps | |
def _testtube(self, pl_module, images, batch_idx, split): | |
""" log images and videos to tensorboard """ | |
for k in images: | |
tag = f"{split}/{k}" | |
if images[k].dim() == 5: | |
video = images[k] | |
n = video.shape[0] | |
video = video.permute(2, 0, 1, 3, 4) | |
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(np.sqrt(n))) for framesheet in video] | |
grid = torch.stack(frame_grids, dim=0) | |
grid = (grid + 1.0) / 2.0 | |
grid = grid.unsqueeze(dim=0) | |
pl_module.logger.experiment.add_video( | |
tag, grid, | |
global_step=pl_module.global_step) | |
else: | |
grid = torchvision.utils.make_grid(images[k]) | |
grid = (grid + 1.0) / 2.0 | |
pl_module.logger.experiment.add_image( | |
tag, grid, | |
global_step=pl_module.global_step) | |
def log_local(self, save_dir, split, images, | |
global_step, current_epoch, batch_idx, rank_idx): | |
""" save images and videos from images dict """ | |
root = os.path.join(save_dir, "images", split) | |
os.makedirs(root, exist_ok=True) | |
def save_img_grid(grid, path, rescale): | |
if rescale: | |
grid = (grid + 1.0) / 2.0 | |
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
grid = grid.numpy() | |
grid = (grid * 255).astype(np.uint8) | |
os.makedirs(os.path.split(path)[0], exist_ok=True) | |
Image.fromarray(grid).save(path) | |
fps = images.pop('fps', None) | |
fs = images.pop('frame_stride', None) | |
for k in images: | |
img = images[k] | |
if isinstance(img, list) and isinstance(img[0], str): | |
# a batch of captions | |
filename = "string_{}_gs-{:06}_e-{:06}_b-{:06}_r-{:02}.txt".format( | |
k, | |
global_step, | |
current_epoch, | |
batch_idx, | |
rank_idx, | |
) | |
path = os.path.join(root, filename) | |
with open(path, 'w') as f: | |
for i, txt in enumerate(img): | |
f.write(f'idx={i}, txt={txt}\n') | |
f.close() | |
elif img.dim() == 5: | |
# save video grids | |
video = img # b,c,t,h,w | |
n = video.shape[0] | |
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w | |
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(np.sqrt(n))) for framesheet in video] # [3, grid_h, grid_w] | |
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [T, 3, grid_h, grid_w] | |
if self.rescale: | |
grid = (grid + 1.0) / 2.0 | |
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, 3, grid_h, grid_w] -> [T, grid_h, grid_w, 3] | |
filename = "video_{}_gs-{:06}_e-{:06}_b-{:06}_r-{:02}.mp4".format( | |
k, | |
global_step, | |
current_epoch, | |
batch_idx, | |
rank_idx, | |
) | |
filename = filename.split('.mp4')[0] + f'_fps{fps}.mp4' if fps is not None else filename | |
filename = filename.split('.mp4')[0] + f'_fs{fs}.mp4' if fs is not None else filename | |
path = os.path.join(root, filename) | |
print('Save video ...') | |
torchvision.io.write_video(path, grid, fps=self.save_fps, video_codec='h264', options={'crf': '10'}) | |
print('Finish!') | |
# save frame sheet | |
video_frames = rearrange(img, 'b c t h w -> (b t) c h w') | |
t = img.shape[2] | |
grid = torchvision.utils.make_grid(video_frames, nrow=t) | |
filename = "framesheet_{}_gs-{:06}_e-{:06}_b-{:06}_r-{:02}.jpg".format( | |
k, | |
global_step, | |
current_epoch, | |
batch_idx, | |
rank_idx, | |
) | |
path = os.path.join(root, filename) | |
print('Save framesheet ...') | |
save_img_grid(grid, path, self.rescale) | |
print('Finish!') | |
else: | |
grid = torchvision.utils.make_grid(img, nrow=4) | |
filename = "{}_gs-{:06}_e-{:06}_b-{:06}_r-{:02}.jpg".format( | |
k, | |
global_step, | |
current_epoch, | |
batch_idx, | |
rank_idx, | |
) | |
path = os.path.join(root, filename) | |
print('Save image grid ...') | |
save_img_grid(grid, path, self.rescale) | |
print('Finish!') | |
def log_img(self, pl_module, batch, batch_idx, split="train", rank=0): | |
""" generate images, then save and log to tensorboard """ | |
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step | |
if (self.check_frequency(check_idx) and | |
hasattr(pl_module, "log_images") and | |
callable(pl_module.log_images) and | |
self.max_images > 0): | |
logger = type(pl_module.logger) | |
is_train = pl_module.training | |
if is_train: | |
pl_module.eval() | |
torch.cuda.empty_cache() | |
with torch.no_grad(): | |
log_func = pl_module.log_videos if hasattr(pl_module, 'is_video') and pl_module.is_video else pl_module.log_images | |
images = log_func(batch, split=split) | |
torch.cuda.empty_cache() | |
# process images | |
for k in images: | |
if hasattr(images[k], 'shape'): | |
N = min(images[k].shape[0], self.max_images) | |
images[k] = images[k][:N] | |
if isinstance(images[k], torch.Tensor): | |
images[k] = images[k].detach().cpu() | |
if self.clamp: | |
images[k] = torch.clamp(images[k], -1., 1.) | |
print("Log local ...") | |
self.log_local(pl_module.logger.save_dir, split, images, | |
pl_module.global_step, pl_module.current_epoch, | |
batch_idx, rank) | |
if self.log_to_tblogger: | |
print("Log images to logger ...") | |
logger_log_images = self.logger_log_images.get(logger, lambda *args, **kwargs: None) | |
logger_log_images(pl_module, images, pl_module.global_step, split) | |
print('Finish!') | |
if is_train: | |
pl_module.train() | |
def check_frequency(self, check_idx): | |
if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and ( | |
check_idx > 0 or self.log_first_step): | |
try: | |
self.log_steps.pop(0) | |
except IndexError as e: | |
print(e) | |
pass | |
return True | |
return False | |
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=None): | |
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step): | |
self.log_img(pl_module, batch, batch_idx, split="train", rank=trainer.global_rank) | |
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=None): | |
if not self.disabled and pl_module.global_step > 0: | |
self.log_img(pl_module, batch, batch_idx, split="val", rank=trainer.global_rank) | |
if hasattr(pl_module, 'calibrate_grad_norm'): | |
if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0: | |
self.log_gradients(trainer, pl_module, batch_idx=batch_idx) | |
# --------------------------------------------------------------------------------- | |
class CUDACallback(Callback): | |
def on_train_epoch_start(self, trainer, pl_module): | |
# Reset the memory use counter | |
# lightning update | |
if int((pl.__version__).split('.')[1])>=7: | |
gpu_index = trainer.strategy.root_device.index | |
else: | |
gpu_index = trainer.root_gpu | |
torch.cuda.reset_peak_memory_stats(gpu_index) | |
torch.cuda.synchronize(gpu_index) | |
self.start_time = time.time() | |
def on_train_epoch_end(self, trainer, pl_module): | |
if int((pl.__version__).split('.')[1])>=7: | |
gpu_index = trainer.strategy.root_device.index | |
else: | |
gpu_index = trainer.root_gpu | |
torch.cuda.synchronize(gpu_index) | |
max_memory = torch.cuda.max_memory_allocated(gpu_index) / 2 ** 20 | |
epoch_time = time.time() - self.start_time | |
try: | |
max_memory = trainer.training_type_plugin.reduce(max_memory) | |
epoch_time = trainer.training_type_plugin.reduce(epoch_time) | |
rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds") | |
rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB") | |
except AttributeError: | |
pass | |
# --------------------------------------------------------------------------------- | |
# for lower lighting | |
class SetupCallback_low(Callback): | |
def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config, auto_resume, save_ptl_log=False): | |
super().__init__() | |
self.resume = resume | |
self.now = now | |
self.logdir = logdir | |
self.ckptdir = ckptdir | |
self.cfgdir = cfgdir | |
self.config = config | |
self.lightning_config = lightning_config | |
self.auto_resume = auto_resume | |
self.save_ptl_log = save_ptl_log | |
def on_keyboard_interrupt(self, trainer, pl_module): | |
if trainer.global_rank == 0: | |
print("Summoning checkpoint.") | |
ckpt_path = os.path.join(self.ckptdir, "last_summoning.ckpt") | |
trainer.save_checkpoint(ckpt_path) | |
# for old version lightning | |
def on_pretrain_routine_start(self, trainer, pl_module): | |
if trainer.global_rank == 0: | |
# Create logdirs and save configs | |
os.makedirs(self.logdir, exist_ok=True) | |
os.makedirs(self.ckptdir, exist_ok=True) | |
os.makedirs(self.cfgdir, exist_ok=True) | |
if self.save_ptl_log: | |
logger = logging.getLogger("pytorch_lightning") | |
logger.addHandler(logging.FileHandler(os.path.join(self.logdir, "ptl_log.log"))) | |
if "callbacks" in self.lightning_config: | |
if 'metrics_over_trainsteps_checkpoint' in self.lightning_config['callbacks']: | |
os.makedirs(os.path.join(self.ckptdir, 'trainstep_checkpoints'), exist_ok=True) | |
print("Project config") | |
print(OmegaConf.to_yaml(self.config)) | |
OmegaConf.save(self.config, | |
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now))) | |
print("Lightning config") | |
print(OmegaConf.to_yaml(self.lightning_config)) | |
OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}), | |
os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now))) | |
else: | |
pass | |
# for higher lighting | |
class SetupCallback_high(Callback): | |
def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config, auto_resume, save_ptl_log=False): | |
super().__init__() | |
self.resume = resume | |
self.now = now | |
self.logdir = logdir | |
self.ckptdir = ckptdir | |
self.cfgdir = cfgdir | |
self.config = config | |
self.lightning_config = lightning_config | |
self.auto_resume = auto_resume | |
self.save_ptl_log = save_ptl_log | |
def on_keyboard_interrupt(self, trainer, pl_module): | |
if trainer.global_rank == 0: | |
print("Summoning checkpoint.") | |
ckpt_path = os.path.join(self.ckptdir, "last_summoning.ckpt") | |
trainer.save_checkpoint(ckpt_path) | |
# RuntimeError: The `Callback.on_pretrain_routine_start` hook was removed in v1.8. Please use `Callback.on_fit_start` instead. | |
def on_fit_start(self, trainer, pl_module): | |
if trainer.global_rank == 0: | |
# Create logdirs and save configs | |
os.makedirs(self.logdir, exist_ok=True) | |
os.makedirs(self.ckptdir, exist_ok=True) | |
os.makedirs(self.cfgdir, exist_ok=True) | |
if self.save_ptl_log: | |
logger = logging.getLogger("pytorch_lightning") | |
logger.addHandler(logging.FileHandler(os.path.join(self.logdir, "ptl_log.log"))) | |
if "callbacks" in self.lightning_config: | |
if 'metrics_over_trainsteps_checkpoint' in self.lightning_config['callbacks']: | |
os.makedirs(os.path.join(self.ckptdir, 'trainstep_checkpoints'), exist_ok=True) | |
print("Project config") | |
print(OmegaConf.to_yaml(self.config)) | |
OmegaConf.save(self.config, | |
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now))) | |
print("Lightning config") | |
print(OmegaConf.to_yaml(self.lightning_config)) | |
OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}), | |
os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now))) | |