# Dataloader for training GenHead, modified from EG3D: https://github.com/NVlabs/eg3d # SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: LicenseRef-NvidiaProprietary # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. """Streaming images and labels from datasets created with dataset_tool.py.""" import os import sys import numpy as np import zipfile import PIL.Image import json import torch import dnnlib from training.dataloader.protocols import datum_genhead_pb2 as datum_pb2 import lmdb import cv2 # try: # import pyspng # except ImportError: pyspng = None #---------------------------------------------------------------------------- class Dataset(torch.utils.data.Dataset): def __init__(self, name, # Name of the dataset. raw_shape, # Shape of the raw image data (NCHW). max_size = None, # Artificially limit the size of the dataset. None = no limit. Applied before xflip. use_labels = False, # Enable conditioning labels? False = label dimension is zero. xflip = False, # Artificially double the size of the dataset via x-flips. Applied after max_size. random_seed = 0, # Random seed to use when applying max_size. ): self._name = name self._raw_shape = list(raw_shape) self._use_labels = use_labels self._raw_labels = None self._label_shape = None # Apply max_size. self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64) if (max_size is not None) and (self._raw_idx.size > max_size): np.random.RandomState(random_seed).shuffle(self._raw_idx) self._raw_idx = np.sort(self._raw_idx[:max_size]) # Apply xflip. self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8) if xflip: self._raw_idx = np.tile(self._raw_idx, 2) self._xflip = np.concatenate([self._xflip, np.ones_like(self._xflip)]) def _get_raw_labels(self): if self._raw_labels is None: self._raw_labels = self._load_raw_labels() if self._use_labels else None if self._raw_labels is None: self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32) assert isinstance(self._raw_labels, np.ndarray) assert self._raw_labels.shape[0] == self._raw_shape[0] assert self._raw_labels.dtype in [np.float32, np.int64] if self._raw_labels.dtype == np.int64: assert self._raw_labels.ndim == 1 assert np.all(self._raw_labels >= 0) self._raw_labels_std = self._raw_labels.std(0) return self._raw_labels def close(self): # to be overridden by subclass pass def _load_raw_image(self, raw_idx): # to be overridden by subclass raise NotImplementedError def _load_raw_labels(self): # to be overridden by subclass raise NotImplementedError def __getstate__(self): return dict(self.__dict__, _raw_labels=None) def __del__(self): try: self.close() except: pass def __len__(self): return self._raw_idx.size def __getitem__(self, idx): image = self._load_raw_image(self._raw_idx[idx]) assert isinstance(image, np.ndarray) assert list(image.shape) == self.image_shape assert image.dtype == np.uint8 if self._xflip[idx]: assert image.ndim == 3 # CHW image = image[:, :, ::-1] return image.copy(), self.get_label(idx) def get_label(self, idx): label = self._get_raw_labels()[self._raw_idx[idx]] if label.dtype == np.int64: onehot = np.zeros(self.label_shape, dtype=np.float32) onehot[label] = 1 label = onehot return label.copy() def get_details(self, idx): d = dnnlib.EasyDict() d.raw_idx = int(self._raw_idx[idx]) d.xflip = (int(self._xflip[idx]) != 0) d.raw_label = self._get_raw_labels()[d.raw_idx].copy() return d def get_label_std(self): return self._raw_labels_std @property def name(self): return self._name @property def image_shape(self): return list(self._raw_shape[1:]) @property def num_channels(self): assert len(self.image_shape) == 3 # CHW return self.image_shape[0] @property def resolution(self): assert len(self.image_shape) == 3 # CHW assert self.image_shape[1] == self.image_shape[2] return self.image_shape[1] @property def label_shape(self): if self._label_shape is None: raw_labels = self._get_raw_labels() if raw_labels.dtype == np.int64: self._label_shape = [int(np.max(raw_labels)) + 1] else: self._label_shape = raw_labels.shape[1:] return list(self._label_shape) @property def label_dim(self): assert len(self.label_shape) == 1 return self.label_shape[0] @property def has_labels(self): return any(x != 0 for x in self.label_shape) @property def has_onehot_labels(self): return self._get_raw_labels().dtype == np.int64 class PortraitSynthesisSegLmdbFolderDatasetV2(Dataset): def __init__(self, path, # Path to datalist. resolution = None, # Ensure specific resolution, None = highest available. data_type = "vox2",# Set dataset type, deprecated rescale_camera = False, # Rescale camera extrinsics and intrinscs to align with an older version of camera labels **super_kwargs, # Additional arguments for the Dataset base class. ): self._path = path print(self._path) self._resolution = resolution self._zipfile = None self._data_type = data_type self.rescale_camera = rescale_camera # initialize lmdb if os.path.isdir(self._path): self.db = None self.txn = None self.num = None self.datum = None else: raise IOError('Path must point to a directory or zip') # print('./data/FFHQ_512_50/'.split("/")[-2]) # print(self._path) # print((self._path.split("/")[-2].split("_")[-2])) img_size = int(self._path.split("/")[-2].split("_")[-2]) num = int(self._path.split("/")[-2].split("_")[-1]) img_shape = [3, img_size, img_size] raw_shape = [num] + img_shape if resolution is None: self._resolution = raw_shape[2] name = os.path.splitext(os.path.basename(self._path))[0] super().__init__(name=name, raw_shape=raw_shape, **super_kwargs) def open_lmdb(self): self.db = lmdb.open(self._path, map_size=1024 ** 4, readonly=True, lock=False) self.txn = self.db.begin() self.num = int(self.txn.get('num_samples'.encode())) self.datum = datum_pb2.Datum_genhead() def get_details(self, idx): d = dnnlib.EasyDict() d.raw_idx = int(self._raw_idx[idx]) d.xflip = (int(self._xflip[idx]) != 0) d.raw_label = self._load_raw_labels(d.raw_idx).copy() return d def get_label_std(self): return 0 @property def resolution(self): return self._resolution @property def label_shape(self): if self._label_shape is None: raw_labels = self._load_raw_labels(0) self._label_shape = raw_labels.shape return list(self._label_shape) @property def label_dim(self): assert len(self.label_shape) == 1 return self.label_shape[0] @property def has_labels(self): return any(x != 0 for x in self.label_shape) @property def has_onehot_labels(self): return self._load_raw_labels(0).dtype == np.int64 def __getstate__(self): return dict(super().__getstate__(), _zipfile=None) def _load_raw_image(self, raw_idx): if self.txn is None: self.open_lmdb() value = self.txn.get('{:0>8d}'.format(raw_idx).encode()) self.datum.ParseFromString(value) image = np.fromstring(self.datum.image, dtype=np.uint8) image = cv2.imdecode(image, cv2.IMREAD_COLOR) image = image[:, :, [2, 1, 0]] # bgr -> rgb if image.ndim == 2: image = image[:, :, np.newaxis] # HW => HWC image = image.transpose(2, 0, 1) # HWC => CHW return image def _load_raw_seg(self, raw_idx): if self.txn is None: self.open_lmdb() value = self.txn.get('{:0>8d}'.format(raw_idx).encode()) self.datum.ParseFromString(value) seg = np.fromstring(self.datum.seg, dtype=np.uint8) seg = cv2.imdecode(seg, cv2.IMREAD_COLOR) if seg.ndim == 2: seg = seg[:, :, np.newaxis] # HW => HWC seg = seg.transpose(2, 0, 1) # HWC => CHW if seg.shape[0] == 1: seg = np.tile(seg, (3, 1, 1)) return seg def _load_raw_labels(self, raw_idx): if self.txn is None: self.open_lmdb() value = self.txn.get('{:0>8d}'.format(raw_idx).encode()) self.datum.ParseFromString(value) labels = np.fromstring(self.datum.labels, dtype=np.float32) intrinsics = labels[16:25].reshape(3,3) if self.rescale_camera: # normalize intrinsics if self._resolution != intrinsics[0,2]*2: intrinsics[:2,:] *= (0.5*self._resolution/intrinsics[0,2]) intrinsics[0, 0] /= self._resolution intrinsics[1, 1] /= self._resolution intrinsics[0, 2] /= self._resolution intrinsics[1, 2] /= self._resolution # rescale extrinsics extrinsics = labels[:16].reshape(4,4) # Our face scale is around 0.1~0.2. Multiply by 3 to match the scale of EG3D extrinsics[:3,3] *= 3 return labels def get_label(self, idx): label = self._load_raw_labels(self._raw_idx[idx])[:25] return label.copy() def get_shape_param(self, idx): label = self._load_raw_labels(self._raw_idx[idx])[25:325] return label.copy() def get_exp_param(self, idx): label = self._load_raw_labels(self._raw_idx[idx])[325:425] return label.copy() def get_exp_param_w_jaw_pose(self, idx): label = self._load_raw_labels(self._raw_idx[idx]) label = np.concatenate([label[325:425],label[428:431]],axis=0) return label.copy() def get_pose_param(self, idx): label = self._load_raw_labels(self._raw_idx[idx])[425:431] return label.copy() def get_eye_pose_param(self, idx): label = self._load_raw_labels(self._raw_idx[idx])[431:437] return label.copy() def get_label_all(self,idx): c = self.get_label(idx) shape_param = self.get_shape_param(idx) exp_param = self.get_exp_param(idx) pose_param = self.get_pose_param(idx) eye_pose_param = self.get_eye_pose_param(idx) return c, shape_param, exp_param, pose_param, eye_pose_param def __getitem__(self, idx): image = self._load_raw_image(self._raw_idx[idx]) seg = self._load_raw_seg(self._raw_idx[idx]) assert isinstance(image, np.ndarray) assert isinstance(seg, np.ndarray) assert list(image.shape) == self.image_shape assert seg.shape[1] == self.image_shape[1] and seg.shape[2] == self.image_shape[2] assert image.dtype == np.uint8 return image.copy(), seg.copy(), self.get_label(idx), self.get_shape_param(idx), self.get_exp_param(idx), self.get_pose_param(idx), self.get_eye_pose_param(idx)