# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: LicenseRef-NvidiaProprietary # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. """ The renderer is a module that takes in rays, decides where to sample along each ray, and computes pixel colors using the volume rendering equation. """ import math import torch import torch.nn as nn import numpy as np from .ray_marcher import MipRayMarcher2 from . import math_utils # global Meshes, load_obj, rasterize_meshes # from pytorch3d.structures import Meshes # from pytorch3d.io import load_obj # from pytorch3d.renderer.mesh import rasterize_meshes def generate_planes(return_inv=True): # 与project_onto_planes相对应 """ Defines planes by the three vectors that form the "axes" of the plane. Should work with arbitrary number of planes and planes of arbitrary orientation. """ planes = torch.tensor([[[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[1, 0, 0], [0, 0, 1], [0, 1, 0]], [[0, 0, 1], [1, 0, 0], [0, 1, 0]]], dtype=torch.float32) if return_inv: return torch.linalg.inv(planes) else: return planes def project_onto_planes(inv_planes, coordinates): """ Does a projection of a 3D point onto a batch of 2D planes, returning 2D plane coordinates. Takes plane axes of shape n_planes, 3, 3 # Takes coordinates of shape N, M, 3 # returns projections of shape N*n_planes, M, 2 """ N, M, C = coordinates.shape n_planes = 3 coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3) inv_planes = inv_planes.unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3) projections = torch.bmm(coordinates, inv_planes) return projections[..., :2] # def project_onto_planes(planes, coordinates): # """ # Does a projection of a 3D point onto a batch of 2D planes, # returning 2D plane coordinates. # # Takes plane axes of shape n_planes, 3, 3 # # Takes coordinates of shape N, M, 3 # # returns projections of shape N*n_planes, M, 2 # """ # N, M, C = coordinates.shape # n_planes, _, _ = planes.shape # coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3) # print('project_onto_planes', planes.view(-1), torch.abs(planes).sum()) # print(torch.linalg.inv(planes.clone().detach())) # inv_planes = torch.linalg.inv(planes).unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3) # TODO:此处是否有翻转? # projections = torch.bmm(coordinates, inv_planes) # return projections[..., :2] def sample_from_planes(inv_planes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None, debug=False): assert padding_mode == 'zeros' N, n_planes, C, H, W = plane_features.shape _, M, _ = coordinates.shape plane_features = plane_features.view(N*n_planes, C, H, W) coordinates = (2/box_warp) * coordinates # TODO: add specific box bounds if debug: # debug from torch_utils import debug_utils debug_utils.save_obj('unproject_depth_cano.obj', v=coordinates.cpu()[0].numpy()) projected_coordinates = project_onto_planes(inv_planes, coordinates).unsqueeze(1) output_features = torch.nn.functional.grid_sample(plane_features, projected_coordinates.float(), mode=mode, padding_mode=padding_mode, align_corners=False).permute(0, 3, 2, 1).reshape(N, n_planes, M, C) return output_features def sample_from_3dgrid(grid, coordinates, padding_mode='zeros', box_warp=None, pyramid=False): """ Expects coordinates in shape (batch_size, num_points_per_batch, 3) Expects grid in shape (1, channels, H, W, D) (Also works if grid has batch size) Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels) """ batch_size, n_coords, n_dims = coordinates.shape coordinates = (2 / box_warp) * coordinates # TODO: add specific box bounds sampled_features = torch.nn.functional.grid_sample(grid.expand(batch_size, -1, -1, -1, -1), coordinates.reshape(batch_size, 1, 1, -1, n_dims), mode='bilinear', padding_mode=padding_mode, align_corners=False) if pyramid: for i in range(2): grid_ = torch.nn.functional.interpolate(grid, scale_factor=0.5**((i+1)*2), mode='trilinear', align_corners=False) sampled_features_ = torch.nn.functional.grid_sample(grid_.expand(batch_size, -1, -1, -1, -1), coordinates.reshape(batch_size, 1, 1, -1, n_dims), mode='bilinear', padding_mode=padding_mode, align_corners=False) sampled_features += sampled_features_ N, C, H, W, D = sampled_features.shape sampled_features = sampled_features.permute(0, 4, 3, 2, 1).reshape(N, H*W*D, C) return sampled_features class ImportanceRenderer(torch.nn.Module): def __init__(self, flip_z): super().__init__() self.ray_marcher = MipRayMarcher2() self.plane_axes = generate_planes() self.flip_z = flip_z def forward(self, planes, decoder, ray_origins, ray_directions, rendering_options): self.plane_axes = self.plane_axes.to(ray_origins.device) if rendering_options['ray_start'] == rendering_options['ray_end'] == 'auto': ray_start, ray_end = math_utils.get_ray_limits_box(ray_origins, ray_directions, box_side_length=rendering_options['box_warp']) is_ray_valid = ray_end > ray_start if torch.any(is_ray_valid).item(): ray_start[~is_ray_valid] = ray_start[is_ray_valid].min() ray_end[~is_ray_valid] = ray_start[is_ray_valid].max() depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling']) else: # Create stratified depth samples depths_coarse = self.sample_stratified(ray_origins, rendering_options['ray_start'], rendering_options['ray_end'], rendering_options['depth_resolution'], rendering_options['disparity_space_sampling']) batch_size, num_rays, samples_per_ray, _ = depths_coarse.shape # Coarse Pass sample_coordinates = (ray_origins.unsqueeze(-2) + depths_coarse * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3) sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3) out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options) colors_coarse = out['rgb'] densities_coarse = out['sigma'] colors_coarse = colors_coarse.reshape(batch_size, num_rays, samples_per_ray, colors_coarse.shape[-1]) densities_coarse = densities_coarse.reshape(batch_size, num_rays, samples_per_ray, 1) # Fine Pass N_importance = rendering_options['depth_resolution_importance'] if N_importance > 0: _, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) depths_fine = self.sample_importance(depths_coarse, weights, N_importance) sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, N_importance, -1).reshape(batch_size, -1, 3) sample_coordinates = (ray_origins.unsqueeze(-2) + depths_fine * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3) out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options) colors_fine = out['rgb'] densities_fine = out['sigma'] colors_fine = colors_fine.reshape(batch_size, num_rays, N_importance, colors_fine.shape[-1]) densities_fine = densities_fine.reshape(batch_size, num_rays, N_importance, 1) all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse, depths_fine, colors_fine, densities_fine) # Aggregate rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options) else: rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) return rgb_final, depth_final, weights.sum(2) def run_model(self, planes, decoder, sample_coordinates, sample_directions, options): if self.flip_z: sample_coordinates[..., -1] *= -1 sampled_features = sample_from_planes(self.plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp']) out = decoder(sampled_features, sample_directions) if options.get('density_noise', 0) > 0: out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise'] return out def sort_samples(self, all_depths, all_colors, all_densities): _, indices = torch.sort(all_depths, dim=-2) all_depths = torch.gather(all_depths, -2, indices) all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) return all_depths, all_colors, all_densities def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2): all_depths = torch.cat([depths1, depths2], dim = -2) all_colors = torch.cat([colors1, colors2], dim = -2) all_densities = torch.cat([densities1, densities2], dim = -2) _, indices = torch.sort(all_depths, dim=-2) all_depths = torch.gather(all_depths, -2, indices) all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) return all_depths, all_colors, all_densities def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False): """ Return depths of approximately uniformly spaced samples along rays. """ N, M, _ = ray_origins.shape if disparity_space_sampling: depths_coarse = torch.linspace(0, 1, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) depth_delta = 1/(depth_resolution - 1) depths_coarse += torch.rand_like(depths_coarse) * depth_delta depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse) else: if type(ray_start) == torch.Tensor: depths_coarse = math_utils.linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3) depth_delta = (ray_end - ray_start) / (depth_resolution - 1) depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None] else: depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) depth_delta = (ray_end - ray_start)/(depth_resolution - 1) depths_coarse += torch.rand_like(depths_coarse) * depth_delta return depths_coarse def sample_importance(self, z_vals, weights, N_importance): """ Return depths of importance sampled points along rays. See NeRF importance sampling for more. """ with torch.no_grad(): batch_size, num_rays, samples_per_ray, _ = z_vals.shape z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray) weights = weights.reshape(batch_size * num_rays, -1) # -1 to account for loss of 1 sample in MipRayMarcher # smooth weights weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1).float(), 2, 1, padding=1) weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze() weights = weights + 0.01 z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:]) importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1], N_importance).detach().reshape(batch_size, num_rays, N_importance, 1) return importance_z_vals def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5): """ Sample @N_importance samples from @bins with distribution defined by @weights. Inputs: bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2" weights: (N_rays, N_samples_) N_importance: the number of samples to draw from the distribution det: deterministic or not eps: a small number to prevent division by zero Outputs: samples: the sampled samples """ N_rays, N_samples_ = weights.shape weights = weights + eps # prevent division by zero (don't do inplace op!) pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_) cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1) # padded to 0~1 inclusive if det: u = torch.linspace(0, 1, N_importance, device=bins.device) u = u.expand(N_rays, N_importance) else: u = torch.rand(N_rays, N_importance, device=bins.device) u = u.contiguous() inds = torch.searchsorted(cdf, u, right=True) below = torch.clamp_min(inds-1, 0) above = torch.clamp_max(inds, N_samples_) inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance) cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2) bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2) denom = cdf_g[...,1]-cdf_g[...,0] denom[denom 0: _, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) depths_fine = self.sample_importance(depths_coarse, weights, N_importance, det=evaluation) sample_coordinates = (ray_origins.unsqueeze(-2) + depths_fine * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3) sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, N_importance, -1).reshape(batch_size, -1, 3) out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options) colors_fine = out['rgb'] densities_fine = out['sigma'] colors_fine = colors_fine.reshape(batch_size, num_rays, N_importance, colors_fine.shape[-1]) densities_fine = densities_fine.reshape(batch_size, num_rays, N_importance, 1) all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse, depths_fine, colors_fine, densities_fine) # Aggregate rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options) else: rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) return rgb_final, depth_final, weights.sum(2) def run_model(self, planes, decoder, sample_coordinates, sample_directions, options): # sample_coordinates[..., -1] *= -1 # if planes.shape[1] == 3: sampled_features = sample_from_planes(self.plane_axes.clone(), planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp']) # elif planes.shape[2] == planes.shape[-1]: # sampled_features = sample_from_3dgrid(planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp'], pyramid=True).unsqueeze(1) out = decoder(sampled_features, sample_directions) if options.get('density_noise', 0) > 0: out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise'] return out def sort_samples(self, all_depths, all_colors, all_densities): _, indices = torch.sort(all_depths, dim=-2) all_depths = torch.gather(all_depths, -2, indices) all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) return all_depths, all_colors, all_densities def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2): all_depths = torch.cat([depths1, depths2], dim = -2) all_colors = torch.cat([colors1, colors2], dim = -2) all_densities = torch.cat([densities1, densities2], dim = -2) _, indices = torch.sort(all_depths, dim=-2) all_depths = torch.gather(all_depths, -2, indices) all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) return all_depths, all_colors, all_densities def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False): """ Return depths of approximately uniformly spaced samples along rays. """ N, M, _ = ray_origins.shape if disparity_space_sampling: depths_coarse = torch.linspace(0, 1, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) depth_delta = 1/(depth_resolution - 1) depths_coarse += torch.rand_like(depths_coarse) * depth_delta depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse) else: if type(ray_start) == torch.Tensor: # ray_start [N, M, 1] depths_coarse = math_utils.linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3) # [D, N, M, 1] -> [N, M, D, 1] depth_delta = (ray_end - ray_start) / (depth_resolution - 1) # [N, M, 1] depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None] # [N, M, D, 1] else: depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) depth_delta = (ray_end - ray_start)/(depth_resolution - 1) depths_coarse += torch.rand_like(depths_coarse) * depth_delta return depths_coarse def sample_importance(self, z_vals, weights, N_importance, det): """ Return depths of importance sampled points along rays. See NeRF importance sampling for more. """ with torch.no_grad(): batch_size, num_rays, samples_per_ray, _ = z_vals.shape z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray) weights = weights.reshape(batch_size * num_rays, -1) # -1 to account for loss of 1 sample in MipRayMarcher # smooth weights weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1).float(), 2, 1, padding=1) weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze() weights = weights + 0.01 z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:]) importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1], N_importance, det).detach().reshape(batch_size, num_rays, N_importance, 1) return importance_z_vals def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5): """ Sample @N_importance samples from @bins with distribution defined by @weights. Inputs: bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2" weights: (N_rays, N_samples_) N_importance: the number of samples to draw from the distribution det: deterministic or not eps: a small number to prevent division by zero Outputs: samples: the sampled samples """ N_rays, N_samples_ = weights.shape weights = weights + eps # prevent division by zero (don't do inplace op!) pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_) cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1) # padded to 0~1 inclusive if det: u = torch.linspace(0, 1, N_importance, device=bins.device) u = u.expand(N_rays, N_importance) else: u = torch.rand(N_rays, N_importance, device=bins.device) u = u.contiguous() inds = torch.searchsorted(cdf, u, right=True) below = torch.clamp_min(inds-1, 0) above = torch.clamp_max(inds, N_samples_) inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance) cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2) bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2) denom = cdf_g[...,1]-cdf_g[...,0] denom[denomw: fixed_vertices[..., 1] = fixed_vertices[..., 1]*h/w else: fixed_vertices[..., 0] = fixed_vertices[..., 0]*w/h meshes_screen = Meshes(verts=fixed_vertices.float(), faces=faces.long()) pix_to_face, zbuf, bary_coords, dists = rasterize_meshes( meshes_screen, image_size=image_size, blur_radius=raster_settings['blur_radius'], faces_per_pixel=raster_settings['faces_per_pixel'], bin_size=0,#raster_settings['bin_size'], max_faces_per_bin=raster_settings['max_faces_per_bin'], perspective_correct=raster_settings['perspective_correct'], cull_backfaces=raster_settings['cull_backfaces'] ) vismask = (pix_to_face > -1).float() D = attributes.shape[-1] attributes = attributes.clone(); attributes = attributes.view(attributes.shape[0]*attributes.shape[1], 3, attributes.shape[-1]) N, H, W, K, _ = bary_coords.shape mask = pix_to_face == -1 pix_to_face = pix_to_face.clone() pix_to_face[mask] = 0 idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D) pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D) pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2) pixel_vals[mask] = 0 # Replace masked values in output. pixel_vals = pixel_vals[:,:,:,0].permute(0,3,1,2) pixel_vals = torch.cat([pixel_vals, vismask[:,:,:,0][:,None,:,:]], dim=1) # print(image_size) # import ipdb; ipdb.set_trace() return pixel_vals def render_after_rasterize(attributes, pix_to_face, bary_coords): vismask = (pix_to_face > -1).float() D = attributes.shape[-1] attributes = attributes.clone() attributes = attributes.view(attributes.shape[0] * attributes.shape[1], 3, attributes.shape[-1]) N, H, W, K, _ = bary_coords.shape mask = pix_to_face == -1 pix_to_face = pix_to_face.clone() pix_to_face[mask] = 0 idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D) pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D) pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2) pixel_vals[mask] = 0 # Replace masked values in output. pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2) pixel_vals = torch.cat([pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1) return pixel_vals # borrowed from https://github.com/daniilidis-group/neural_renderer/blob/master/neural_renderer/vertices_to_faces.py def face_vertices(vertices, faces): """ :param vertices: [batch size, number of vertices, 3] :param faces: [batch size, number of faces, 3] :return: [batch size, number of faces, 3, 3] """ assert (vertices.ndimension() == 3) assert (faces.ndimension() == 3) assert (vertices.shape[0] == faces.shape[0]) assert (vertices.shape[2] == 3) assert (faces.shape[2] == 3) bs, nv = vertices.shape[:2] bs, nf = faces.shape[:2] device = vertices.device faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] vertices = vertices.reshape((bs * nv, 3)) # pytorch only supports long and byte tensors for indexing return vertices[faces.long()] # ---------------------------- process/generate vertices, normals, faces def generate_triangles(h, w, margin_x=2, margin_y=5, mask = None): # quad layout: # 0 1 ... w-1 # w w+1 #. # w*h triangles = [] for x in range(margin_x, w-1-margin_x): for y in range(margin_y, h-1-margin_y): triangle0 = [y*w + x, y*w + x + 1, (y+1)*w + x] triangle1 = [y*w + x + 1, (y+1)*w + x + 1, (y+1)*w + x] triangles.append(triangle0) triangles.append(triangle1) triangles = np.array(triangles) triangles = triangles[:,[0,2,1]] return triangles def transform_points(points, tform, points_scale=None, out_scale=None): points_2d = points[:,:,:2] #'input points must use original range' if points_scale: assert points_scale[0]==points_scale[1] points_2d = (points_2d*0.5 + 0.5)*points_scale[0] # import ipdb; ipdb.set_trace() batch_size, n_points, _ = points.shape trans_points_2d = torch.bmm( torch.cat([points_2d, torch.ones([batch_size, n_points, 1], device=points.device, dtype=points.dtype)], dim=-1), tform ) if out_scale: # h,w of output image size trans_points_2d[:,:,0] = trans_points_2d[:,:,0]/out_scale[1]*2 - 1 trans_points_2d[:,:,1] = trans_points_2d[:,:,1]/out_scale[0]*2 - 1 trans_points = torch.cat([trans_points_2d[:,:,:2], points[:,:,2:]], dim=-1) return trans_points def batch_orth_proj(X, camera): ''' orthgraphic projection X: 3d vertices, [bz, n_point, 3] camera: scale and translation, [bz, 3], [scale, tx, ty] ''' camera = camera.clone().view(-1, 1, 3) X_trans = X[:, :, :2] + camera[:, :, 1:] X_trans = torch.cat([X_trans, X[:, :, 2:]], 2) shape = X_trans.shape Xn = (camera[:, :, 0:1] * X_trans) return Xn def angle2matrix(angles): ''' get rotation matrix from three rotation angles(degree). right-handed. Args: angles: [batch_size, 3] tensor containing X, Y, and Z angles. x: pitch. positive for looking down. y: yaw. positive for looking left. z: roll. positive for tilting head right. Returns: R: [batch_size, 3, 3]. rotation matrices. ''' angles = angles*(np.pi)/180. s = torch.sin(angles) c = torch.cos(angles) cx, cy, cz = (c[:, 0], c[:, 1], c[:, 2]) sx, sy, sz = (s[:, 0], s[:, 1], s[:, 2]) zeros = torch.zeros_like(s[:, 0]).to(angles.device) ones = torch.ones_like(s[:, 0]).to(angles.device) # Rz.dot(Ry.dot(Rx)) R_flattened = torch.stack( [ cz * cy, cz * sy * sx - sz * cx, cz * sy * cx + sz * sx, sz * cy, sz * sy * sx + cz * cx, sz * sy * cx - cz * sx, -sy, cy * sx, cy * cx, ], dim=0) #[batch_size, 9] R = torch.reshape(R_flattened, (-1, 3, 3)) #[batch_size, 3, 3] return R import cv2 # end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype = np.int32) - 1 def plot_kpts(image, kpts, color = 'r', end_list=[19]): ''' Draw 68 key points Args: image: the input image kpt: (68, 3). ''' if color == 'r': c = (255, 0, 0) elif color == 'g': c = (0, 255, 0) elif color == 'b': c = (255, 0, 0) image = image.copy() kpts = kpts.copy() radius = max(int(min(image.shape[0], image.shape[1])/200), 1) for i in range(kpts.shape[0]): st = kpts[i, :2] if kpts.shape[1]==4: if kpts[i, 3] > 0.5: c = (0, 255, 0) else: c = (0, 0, 255) if i in end_list: continue ed = kpts[i + 1, :2] image = cv2.line(image, (int(st[0]), int(st[1])), (int(ed[0]), int(ed[1])), (255, 255, 255), radius) image = cv2.circle(image,(int(st[0]), int(st[1])), radius, c, radius*2) return image import cv2 def fill_mouth(images, blur_mouth_edge=True): # Input: images: [batch, 1, h, w] device = images.device mouth_masks = [] out_mouth_masks = [] for image in images: image = image[0].cpu().numpy() image = image * 255. copyImg = image.copy().astype('float32') h, w = image.shape[:2] mask = np.zeros([h + 2, w + 2], np.uint8) cv2.floodFill(copyImg, mask, (0, 0), (255, 255, 255), (0, 0, 0), (254, 254, 254), cv2.FLOODFILL_FIXED_RANGE) # cv2.imwrite("mouth_mask_ori.png", 255 - copyImg) mouth_mask = torch.tensor(255 - copyImg).to(device).to(torch.float32) / 255. mouth_masks.append(mouth_mask.unsqueeze(0)) if blur_mouth_edge: copyImg = cv2.erode(copyImg, np.ones((3, 3), np.uint8), iterations=3) copyImg = cv2.blur(copyImg, (5, 5)) # cv2.imwrite("mouth_mask.png", mouth_mask) out_mouth_masks.append(torch.tensor(255 - copyImg).to(device).to(torch.float32).unsqueeze(0) / 255.) mouth_masks = torch.stack(mouth_masks, 0) res = (images + mouth_masks).clip(0, 1) return res, torch.stack(out_mouth_masks, dim=0) # def fill_mouth(images): # #Input: images: [batch, 1, h, w] # device = images.device # mouth_masks = [] # out_mouth_masks = [] # out_upper_mouth_masks, out_lower_mouth_masks = [], [] # for image in images: # image = image[0].cpu().numpy() # image = image * 255. # copyImg = image.copy() # h, w = image.shape[:2] # mask = np.zeros([h+2, w+2], np.uint8) # cv2.floodFill(copyImg, mask, (0, 0), (255, 255, 255), (0, 0, 0), (254, 254, 254), cv2.FLOODFILL_FIXED_RANGE) # # cv2.imwrite("mouth_mask_ori.png", 255 - copyImg) # mouth_mask = torch.tensor(255 - copyImg).to(device).to(torch.float32) / 255. # mouth_masks.append(mouth_mask.unsqueeze(0)) # # # copyImg = cv2.erode(copyImg, np.ones((3, 3), np.uint8), iterations=3) # copyImg = cv2.blur(copyImg, (5, 5)) # # cv2.imwrite("mouth_mask.png", mouth_mask) # out_mouth_mask = torch.tensor(255 - copyImg).to(device).to(torch.float32).unsqueeze(0) / 255. # middle_row = torch.argmax(out_mouth_mask.sum(dim=1)) # out_mouth_masks.append() # # mouth_masks = torch.stack(mouth_masks, 0) # res = (images + mouth_masks).clip(0, 1) # # return res, torch.stack(out_mouth_masks, dim=0)