Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
from googleapiclient.discovery import build
|
4 |
+
from selenium import webdriver
|
5 |
+
from selenium.webdriver.chrome.service import Service
|
6 |
+
from selenium.webdriver.chrome.options import Options
|
7 |
+
import openai
|
8 |
+
import gradio as gr
|
9 |
+
import time
|
10 |
+
|
11 |
+
# Set up the YouTube Data API key
|
12 |
+
YOUTUBE_API_KEY = 'AIzaSyB18WjBnkOYmTO3xiWlRqcVgwMAlPtLE0w'
|
13 |
+
|
14 |
+
def extract_video_id(url):
|
15 |
+
if "youtu.be" in url: # Mobile YouTube URL
|
16 |
+
return get_redirected_url_video_id(url)
|
17 |
+
else: # Desktop YouTube URL
|
18 |
+
video_id = re.search(r"v=([^&]+)", url).group(1)
|
19 |
+
return video_id
|
20 |
+
|
21 |
+
def get_redirected_url_video_id(mobile_url):
|
22 |
+
# Set up Chrome options to run headless (without opening a visible browser window)
|
23 |
+
chrome_options = Options()
|
24 |
+
chrome_options.add_argument("--headless")
|
25 |
+
chrome_options.add_argument("--disable-gpu")
|
26 |
+
|
27 |
+
# Specify the path to the ChromeDriver executable
|
28 |
+
chrome_driver_path = '/path/to/chromedriver' # Update this path
|
29 |
+
|
30 |
+
# Create a new Chrome session
|
31 |
+
service = Service(chrome_driver_path)
|
32 |
+
driver = webdriver.Chrome(service=service, options=chrome_options)
|
33 |
+
|
34 |
+
# Open the mobile YouTube link
|
35 |
+
driver.get(mobile_url)
|
36 |
+
|
37 |
+
# Wait for a few seconds to ensure the page has loaded
|
38 |
+
time.sleep(1)
|
39 |
+
|
40 |
+
# Get the current URL (which should be the full YouTube URL)
|
41 |
+
current_url = driver.current_url
|
42 |
+
|
43 |
+
# Close the browser
|
44 |
+
driver.quit()
|
45 |
+
|
46 |
+
# Extract the video ID from the current URL
|
47 |
+
video_id = re.search(r"v=([^&]+)", current_url).group(1)
|
48 |
+
return video_id
|
49 |
+
|
50 |
+
|
51 |
+
def get_youtube_comments(video_id):
|
52 |
+
youtube = build('youtube', 'v3', developerKey=YOUTUBE_API_KEY)
|
53 |
+
comments = []
|
54 |
+
try:
|
55 |
+
# Request to get comments
|
56 |
+
request = youtube.commentThreads().list(
|
57 |
+
part="snippet",
|
58 |
+
videoId=video_id,
|
59 |
+
maxResults=200
|
60 |
+
)
|
61 |
+
response = request.execute()
|
62 |
+
|
63 |
+
# Extract comments
|
64 |
+
for item in response['items']:
|
65 |
+
comment_data = item['snippet']['topLevelComment']['snippet']
|
66 |
+
comments.append({
|
67 |
+
'text': comment_data['textOriginal'],
|
68 |
+
'like_count': comment_data['likeCount']
|
69 |
+
})
|
70 |
+
|
71 |
+
while 'nextPageToken' in response and len(comments) < 1000:
|
72 |
+
request = youtube.commentThreads().list(
|
73 |
+
part="snippet",
|
74 |
+
videoId=video_id,
|
75 |
+
pageToken=response['nextPageToken'],
|
76 |
+
maxResults=100
|
77 |
+
)
|
78 |
+
response = request.execute()
|
79 |
+
for item in response['items']:
|
80 |
+
comment_data = item['snippet']['topLevelComment']['snippet']
|
81 |
+
comments.append({
|
82 |
+
'text': comment_data['textOriginal'],
|
83 |
+
'like_count': comment_data['likeCount']
|
84 |
+
})
|
85 |
+
if len(comments) >= 1000:
|
86 |
+
break
|
87 |
+
except Exception as e:
|
88 |
+
print(f"An error occurred: {e}")
|
89 |
+
|
90 |
+
# Sort comments by like count in descending order and take the top 20
|
91 |
+
comments = sorted(comments, key=lambda x: x['like_count'], reverse=True)[:20]
|
92 |
+
return [comment['text'] for comment in comments]
|
93 |
+
|
94 |
+
|
95 |
+
def generate_story(comments, temperature=0.7):
|
96 |
+
words = []
|
97 |
+
word_count = 0
|
98 |
+
|
99 |
+
for comment in comments:
|
100 |
+
comment_words = comment.split()
|
101 |
+
if word_count + len(comment_words) > 1000:
|
102 |
+
break
|
103 |
+
words.extend(comment_words)
|
104 |
+
word_count += len(comment_words)
|
105 |
+
|
106 |
+
comments_text = " ".join(words)
|
107 |
+
client = openai
|
108 |
+
completion = client.ChatCompletion.create(
|
109 |
+
model="gpt-3.5-turbo",
|
110 |
+
messages=[{"role": "system", "content": f"""
|
111 |
+
|
112 |
+
Read all the comments, understand the emotions people are feeling and pick any random emotion
|
113 |
+
and create a story in first person (the person can be randomly young or old and the story can be
|
114 |
+
based in past or future) based on that emotion picking a random character keep the words
|
115 |
+
simple and a bit profound but overall simple words. Give more weight to the comments that
|
116 |
+
come earlier in sequence. The comments are given here: {comments_text}"""},
|
117 |
+
{"role": "user", "content": """
|
118 |
+
ignore the comment which has lyrics of the song,
|
119 |
+
ignore all comments similar to 'anyone in 2024', Keep the story randomly between 50-120 words.
|
120 |
+
don't mention the emotion chosen just start the story.
|
121 |
+
sometimes include bits where you tell how this song makes you feel. be very nostalgic about a feeling or a place this
|
122 |
+
takes you to. half the times end the story with a hopeful future or a dark end or humorous.. choose randomly"""}]
|
123 |
+
,temperature=temperature)
|
124 |
+
return completion.choices[0].message.content
|
125 |
+
|
126 |
+
|
127 |
+
# Main function to execute the process
|
128 |
+
def main(youtube_url, temperature):
|
129 |
+
video_id = extract_video_id(youtube_url)
|
130 |
+
comments = get_youtube_comments(video_id)
|
131 |
+
story = generate_story(comments, temperature)
|
132 |
+
return story
|
133 |
+
|
134 |
+
|
135 |
+
# Create Gradio interface
|
136 |
+
youtube_url_input = gr.Textbox(label="YouTube URL")
|
137 |
+
temperature_input = gr.Slider(minimum=0.0, maximum=2.0, value=0.7, label="Temperature (creativity)")
|
138 |
+
|
139 |
+
iface = gr.Interface(
|
140 |
+
fn=main,
|
141 |
+
inputs=[youtube_url_input, temperature_input],
|
142 |
+
outputs="text",
|
143 |
+
title="Let's hear a Story",
|
144 |
+
description="Enter a YouTube video URL to read a story which will capture the emotions of thousands of people before you who have listened to this and left comments :). The stories are AI-generated but does that mean it has never happened before or never will? Maybe the reader finds their own story with AI"
|
145 |
+
)
|
146 |
+
|
147 |
+
# Launch the interface
|
148 |
+
iface.launch()
|