Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
|
3 |
+
|
4 |
+
# Define the model repository and tokenizer checkpoint
|
5 |
+
model_checkpoint = "himanishprak23/neural_machine_translation"
|
6 |
+
tokenizer_checkpoint = "Helsinki-NLP/opus-mt-en-hi"
|
7 |
+
|
8 |
+
# Load the tokenizer from Helsinki-NLP and model from Hugging Face repository
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_checkpoint)
|
10 |
+
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
11 |
+
|
12 |
+
def translate_text(input_text):
|
13 |
+
tokenized_input = tokenizer(input_text, return_tensors='tf', max_length=128, truncation=True)
|
14 |
+
generated_tokens = model.generate(**tokenized_input, max_length=128)
|
15 |
+
predicted_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
16 |
+
return predicted_text
|
17 |
+
|
18 |
+
# Create the Gradio interface
|
19 |
+
iface = gr.Interface(
|
20 |
+
fn=translate_text,
|
21 |
+
inputs=gr.components.Textbox(lines=2, placeholder="Enter text to translate from English to Hindi..."),
|
22 |
+
outputs=gr.components.Textbox(),
|
23 |
+
title="English to Hindi Translator",
|
24 |
+
description="Enter English text and get the Hindi translation."
|
25 |
+
)
|
26 |
+
|
27 |
+
# Launch the Gradio app
|
28 |
+
iface.launch()
|