Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,15 +5,20 @@ import pickle
|
|
5 |
import json
|
6 |
import keras
|
7 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
# Define the model repository and tokenizer checkpoint
|
11 |
model_checkpoint = "himanishprak23/neural_machine_translation"
|
12 |
tokenizer_checkpoint = "Helsinki-NLP/opus-mt-en-hi"
|
13 |
|
14 |
-
tokenizer_base_nmt = TFAutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
15 |
-
model_base_nmt = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
|
16 |
-
|
17 |
# Load the tokenizer from Helsinki-NLP and model from Hugging Face repository
|
18 |
tokenizer_nmt = AutoTokenizer.from_pretrained(tokenizer_checkpoint)
|
19 |
model_nmt = TFAutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
@@ -33,9 +38,9 @@ max_len_eng = 20
|
|
33 |
max_len_hin = 22
|
34 |
|
35 |
def translate_text_base_nmt(input_text):
|
36 |
-
|
37 |
-
|
38 |
-
predicted_text =
|
39 |
return predicted_text
|
40 |
|
41 |
def translate_text_nmt(input_text):
|
|
|
5 |
import json
|
6 |
import keras
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
+
from transformers import pipeline
|
9 |
+
|
10 |
+
|
11 |
+
model_name = "Helsinki-NLP/opus-mt-en-hi"
|
12 |
+
|
13 |
+
tokenizer_base_nmt = MarianMTModel.from_pretrained(model_name)
|
14 |
+
model_base_nmt = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
|
16 |
|
17 |
|
18 |
# Define the model repository and tokenizer checkpoint
|
19 |
model_checkpoint = "himanishprak23/neural_machine_translation"
|
20 |
tokenizer_checkpoint = "Helsinki-NLP/opus-mt-en-hi"
|
21 |
|
|
|
|
|
|
|
22 |
# Load the tokenizer from Helsinki-NLP and model from Hugging Face repository
|
23 |
tokenizer_nmt = AutoTokenizer.from_pretrained(tokenizer_checkpoint)
|
24 |
model_nmt = TFAutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
|
|
38 |
max_len_hin = 22
|
39 |
|
40 |
def translate_text_base_nmt(input_text):
|
41 |
+
batch = tokenizer_base_nmt([input_text], return_tensors="pt")
|
42 |
+
generated_ids = model_base_nmt.generate(**batch)
|
43 |
+
predicted_text = tokenizer_base_nmt.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
44 |
return predicted_text
|
45 |
|
46 |
def translate_text_nmt(input_text):
|