import gradio as gr from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM # Define the model repository and tokenizer checkpoint model_checkpoint = "himanishprak23/neural_machine_translation" tokenizer_checkpoint = "Helsinki-NLP/opus-mt-en-hi" # Load the tokenizer from Helsinki-NLP and model from Hugging Face repository tokenizer = AutoTokenizer.from_pretrained(tokenizer_checkpoint) model = TFAutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) def translate_text(input_text): tokenized_input = tokenizer(input_text, return_tensors='tf', max_length=128, truncation=True) generated_tokens = model.generate(**tokenized_input, max_length=128) predicted_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) return predicted_text # Create the Gradio interface iface = gr.Interface( fn=translate_text, inputs=gr.components.Textbox(lines=2, placeholder="Enter text to translate from English to Hindi..."), outputs=gr.components.Textbox(), title="English to Hindi Translator", description="Enter English text and get the Hindi translation." ) # Launch the Gradio app iface.launch()