Spaces:
Sleeping
Sleeping
import pandas as pd | |
import pickle | |
import warnings | |
warnings.filterwarnings("ignore") | |
with open("static/rf_pipeline.pkl", "rb") as f: | |
pipeline2 = pickle.load(f) | |
data = pd.read_csv("static/zone_course_and_colleges.csv") | |
def get_prediction(college_name, course_name = "Computer Science and Engineering"): | |
template = pd.DataFrame([[college_name, | |
course_name, | |
"OPEN", | |
"General", | |
"State", | |
2024, | |
1]], | |
columns=['college_name', 'course_name', 'category', 'gender', 'seat_level_attribute', 'year', 'round']) | |
return pipeline2.predict(template) | |
def get_colleges(marks, zone, course): | |
# data = pd.read_csv("static/zone_course_and_colleges.csv") | |
# print(data[(data["zone"] == zone) & (data["course_name"] == course)]["colleges"].values[0]) | |
try: | |
colleges = list(eval(data[(data["zone"] == zone.strip()) & (data["course_name"] == course.strip())]["colleges"].values[0])) | |
except: | |
return ["Too less to get into"] | |
college_data = [] | |
for college in colleges: | |
prediciton = get_prediction(college, course) | |
if prediciton <= marks: | |
college_data.append(college) | |
return college_data | |
def get_courses_for_zone(zone): | |
row = data[data["zone"] == zone.strip()] | |
courses = row["course_name"].unique() | |
return courses |