Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files
app.py
CHANGED
@@ -9,6 +9,14 @@ app = Flask(__name__)
|
|
9 |
zones = ['Amravati', 'Pune', 'Aurangabad', 'Mumbai & Thane', 'Konkan',
|
10 |
'Nagpur', 'Nashik']
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
@app.route('/', methods=['GET', 'POST'])
|
13 |
def index():
|
14 |
colleges = []
|
@@ -17,11 +25,16 @@ def index():
|
|
17 |
marks = float(request.form['marks'])
|
18 |
zone = request.form['zone']
|
19 |
course = request.form['course']
|
|
|
|
|
|
|
|
|
20 |
|
|
|
21 |
# Call the get_colleges function to predict the list of colleges
|
22 |
-
colleges = get_colleges(marks, zone, course)
|
23 |
|
24 |
-
return render_template('index.html', colleges=colleges, zones = zones)
|
25 |
|
26 |
@app.route('/get_courses', methods=['POST'])
|
27 |
def get_courses():
|
|
|
9 |
zones = ['Amravati', 'Pune', 'Aurangabad', 'Mumbai & Thane', 'Konkan',
|
10 |
'Nagpur', 'Nashik']
|
11 |
|
12 |
+
seat_levels = ['State', 'Home', 'Other Than Home']
|
13 |
+
|
14 |
+
categories = ['OPEN', 'SC', 'ST', 'VJ', 'NT1', 'NT2', 'NT3', 'OBC', 'DEFOPEN',
|
15 |
+
'TFW', 'DEFROBC', 'EW', 'PWDOPEN', 'PWDRSC', 'DEFRSC', 'PWDROBC',
|
16 |
+
'M', 'DEFOBC', 'DEFRNT1', 'DEFRNT2', 'ORPHA', 'PWDRVJ', 'PWDOBC',
|
17 |
+
'PWDRNT1', 'DEFRNT3', 'DEFRVJ', 'DEFSC', 'PWDRNT2', 'PWDSC',
|
18 |
+
'PWDRNT3', 'PWDRST', 'DEFRST', 'PWDROB']
|
19 |
+
|
20 |
@app.route('/', methods=['GET', 'POST'])
|
21 |
def index():
|
22 |
colleges = []
|
|
|
25 |
marks = float(request.form['marks'])
|
26 |
zone = request.form['zone']
|
27 |
course = request.form['course']
|
28 |
+
category = request.form['category']
|
29 |
+
gender = request.form['gender']
|
30 |
+
seat_level = request.form['seat_level']
|
31 |
+
round = 1
|
32 |
|
33 |
+
print(marks, zone, course, category, gender, seat_level, round)
|
34 |
# Call the get_colleges function to predict the list of colleges
|
35 |
+
colleges = get_colleges(marks, zone, course, category, gender, seat_level, round)
|
36 |
|
37 |
+
return render_template('index.html', colleges=colleges, zones = zones, categories = categories, seat_levels = seat_levels)
|
38 |
|
39 |
@app.route('/get_courses', methods=['POST'])
|
40 |
def get_courses():
|
model.py
CHANGED
@@ -7,30 +7,36 @@ with open("static/rf_pipeline.pkl", "rb") as f:
|
|
7 |
pipeline2 = pickle.load(f)
|
8 |
|
9 |
data = pd.read_csv("static/zone_course_and_colleges.csv")
|
|
|
10 |
|
11 |
-
def get_prediction(college_name, course_name
|
12 |
template = pd.DataFrame([[college_name,
|
13 |
course_name,
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
2024,
|
18 |
-
|
19 |
columns=['college_name', 'course_name', 'category', 'gender', 'seat_level_attribute', 'year', 'round'])
|
20 |
return pipeline2.predict(template)
|
21 |
|
22 |
-
def get_colleges(marks, zone, course):
|
23 |
# data = pd.read_csv("static/zone_course_and_colleges.csv")
|
24 |
# print(data[(data["zone"] == zone) & (data["course_name"] == course)]["colleges"].values[0])
|
25 |
try:
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
28 |
return ["Too less to get into"]
|
29 |
college_data = []
|
30 |
for college in colleges:
|
31 |
-
prediciton = get_prediction(college, course)
|
32 |
if prediciton <= marks:
|
33 |
-
college_data.append(college)
|
34 |
return college_data
|
35 |
|
36 |
def get_courses_for_zone(zone):
|
|
|
7 |
pipeline2 = pickle.load(f)
|
8 |
|
9 |
data = pd.read_csv("static/zone_course_and_colleges.csv")
|
10 |
+
df = pd.read_csv("static/final_data_zone.csv")
|
11 |
|
12 |
+
def get_prediction(college_name, course_name, category, gender, seat_level, round = 1):
|
13 |
template = pd.DataFrame([[college_name,
|
14 |
course_name,
|
15 |
+
category,
|
16 |
+
gender,
|
17 |
+
seat_level,
|
18 |
2024,
|
19 |
+
round]],
|
20 |
columns=['college_name', 'course_name', 'category', 'gender', 'seat_level_attribute', 'year', 'round'])
|
21 |
return pipeline2.predict(template)
|
22 |
|
23 |
+
def get_colleges(marks, zone, course, category, gender, seat_level, round):
|
24 |
# data = pd.read_csv("static/zone_course_and_colleges.csv")
|
25 |
# print(data[(data["zone"] == zone) & (data["course_name"] == course)]["colleges"].values[0])
|
26 |
try:
|
27 |
+
row = df[(df["zone"] == zone) & (df["course_name"] == course) & (df["category"] == category) & (df["gender"] == gender) & (df["seat_level_attribute"] == seat_level)]
|
28 |
+
if row.shape[0] == 0:
|
29 |
+
return ["No Seat Found"]
|
30 |
+
colleges = list(row["college_name"].unique())
|
31 |
+
# colleges = list(eval(data[(data["zone"] == zone.strip()) & (data["course_name"] == course.strip())]["colleges"].values[0]))
|
32 |
+
except Exception as e:
|
33 |
+
print("Exception", e)
|
34 |
return ["Too less to get into"]
|
35 |
college_data = []
|
36 |
for college in colleges:
|
37 |
+
prediciton = get_prediction(college, course, category, gender, seat_level, round)
|
38 |
if prediciton <= marks:
|
39 |
+
college_data.append(college + f"predicted cut off = {prediciton}")
|
40 |
return college_data
|
41 |
|
42 |
def get_courses_for_zone(zone):
|