KunalThakare279 commited on
Commit
a944881
·
verified ·
1 Parent(s): 1f764f5

Update model.py

Browse files
Files changed (1) hide show
  1. model.py +7 -5
model.py CHANGED
@@ -21,22 +21,24 @@ def get_prediction(college_name, course_name, category, gender, seat_level, roun
21
  return pipeline2.predict(template)
22
 
23
  def get_colleges(marks, zone, course, category, gender, seat_level, round):
24
- # data = pd.read_csv("static/zone_course_and_colleges.csv")
25
- # print(data[(data["zone"] == zone) & (data["course_name"] == course)]["colleges"].values[0])
26
  try:
27
  row = df[(df["zone"] == zone) & (df["course_name"] == course) & (df["category"] == category) & (df["gender"] == gender) & (df["seat_level_attribute"] == seat_level)]
28
  if row.shape[0] == 0:
29
  return ["No Seat Found"]
30
  colleges = list(row["college_name"].unique())
31
- # colleges = list(eval(data[(data["zone"] == zone.strip()) & (data["course_name"] == course.strip())]["colleges"].values[0]))
32
  except Exception as e:
33
  print("Exception", e)
34
  return ["Too less to get into"]
35
- college_data = []
36
  for college in colleges:
37
  prediciton = get_prediction(college, course, category, gender, seat_level, round)
 
 
38
  if prediciton <= marks:
39
- college_data.append(college + f" predicted cut off = {prediciton}")
 
 
 
40
  return college_data
41
 
42
  def get_courses_for_zone(zone):
 
21
  return pipeline2.predict(template)
22
 
23
  def get_colleges(marks, zone, course, category, gender, seat_level, round):
 
 
24
  try:
25
  row = df[(df["zone"] == zone) & (df["course_name"] == course) & (df["category"] == category) & (df["gender"] == gender) & (df["seat_level_attribute"] == seat_level)]
26
  if row.shape[0] == 0:
27
  return ["No Seat Found"]
28
  colleges = list(row["college_name"].unique())
 
29
  except Exception as e:
30
  print("Exception", e)
31
  return ["Too less to get into"]
32
+ college_data = {}
33
  for college in colleges:
34
  prediciton = get_prediction(college, course, category, gender, seat_level, round)
35
+ if prediciton >= 100:
36
+ print(college, prediciton)
37
  if prediciton <= marks:
38
+ college_code = college.split("-")[0].strip()
39
+ college_name = " ".join(college.split("-")[1:]).strip()
40
+ # college_data.append(college + f" predicted cut off = {prediciton}")
41
+ college_data[college_name] = {"college_code":college_code, "prediction": prediciton}
42
  return college_data
43
 
44
  def get_courses_for_zone(zone):