Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,207 Bytes
f9c4e37 d5629cd f9c4e37 f0ec2f0 f9c4e37 ba53076 f9c4e37 ba53076 f9c4e37 ba53076 f9c4e37 ba53076 2060744 f9c4e37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os
if 'SPACES_APP' in os.environ:
os.system("pip install flash-attn==2.7.3 --no-build-isolation")
import sys
import torch
import diffusers
import transformers
import argparse
import peft
import copy
import cv2
import spaces
import gradio as gr
import numpy as np
from peft import LoraConfig
from omegaconf import OmegaConf
from safetensors.torch import safe_open
from PIL import Image, ImageDraw, ImageFilter
from huggingface_hub import hf_hub_download
from transformers import pipeline
from models import HunyuanVideoTransformer3DModel
from pipelines import HunyuanVideoImageToVideoPipeline
header = """
# DRA-Ctrl Gradio App
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href="https://arxiv.org/pdf/2505.23325"><img src="https://img.shields.io/badge/ariXv-Paper-A42C25.svg" alt="arXiv"></a>
<a href="https://huggingface.co/Kunbyte/DRA-Ctrl"><img src="https://img.shields.io/badge/🤗-Model-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://github.com/Kunbyte-AI/DRA-Ctrl"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
<a href="https://dra-ctrl-2025.github.io/DRA-Ctrl/"><img src="https://img.shields.io/badge/Project-Page-blue" alt="Project"></a>
</div>
"""
notice = """
For easier testing, in spatially-aligned image generation tasks, when passing the condition image to `gradio_app`,
there's no need to manually input edge maps, depth maps, or other condition images - only the original image is required.
The corresponding condition images will be automatically extracted.
"""
@spaces.GPU
def process_image_and_text(condition_image, target_prompt, condition_image_prompt, task):
# init models
transformer = HunyuanVideoTransformer3DModel.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="transformer",
inference_subject_driven=task in ['subject_driven'])
scheduler = diffusers.FlowMatchEulerDiscreteScheduler()
vae = diffusers.AutoencoderKLHunyuanVideo.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="vae")
text_encoder = transformers.LlavaForConditionalGeneration.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="text_encoder")
text_encoder_2 = transformers.CLIPTextModel.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="text_encoder_2")
tokenizer = transformers.AutoTokenizer.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="tokenizer")
tokenizer_2 = transformers.CLIPTokenizer.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="tokenizer_2")
image_processor = transformers.CLIPImageProcessor.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="image_processor")
device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = torch.bfloat16
transformer.requires_grad_(False)
vae.requires_grad_(False).to(device, dtype=weight_dtype)
text_encoder.requires_grad_(False).to(device, dtype=weight_dtype)
text_encoder_2.requires_grad_(False).to(device, dtype=weight_dtype)
transformer.to(device, dtype=weight_dtype)
vae.enable_tiling()
vae.enable_slicing()
# insert LoRA
lora_config = LoraConfig(
r=16,
lora_alpha=16,
init_lora_weights="gaussian",
target_modules=[
'attn.to_k', 'attn.to_q', 'attn.to_v', 'attn.to_out.0',
'attn.add_k_proj', 'attn.add_q_proj', 'attn.add_v_proj', 'attn.to_add_out',
'ff.net.0.proj', 'ff.net.2',
'ff_context.net.0.proj', 'ff_context.net.2',
'norm1_context.linear', 'norm1.linear',
'norm.linear', 'proj_mlp', 'proj_out',
]
)
transformer.add_adapter(lora_config)
# hack LoRA forward
def create_hacked_forward(module):
lora_forward = module.forward
non_lora_forward = module.base_layer.forward
img_sequence_length = int((args.img_size / 8 / 2) ** 2)
encoder_sequence_length = 144 + 252 # encoder sequence: 144 img 252 txt
num_imgs = 4
num_generated_imgs = 3
num_encoder_sequences = 2 if args.task in ['subject_driven', 'style_transfer'] else 1
def hacked_lora_forward(self, x, *args, **kwargs):
if x.shape[1] == img_sequence_length * num_imgs and len(x.shape) > 2:
return torch.cat((
lora_forward(x[:, :-img_sequence_length*num_generated_imgs], *args, **kwargs),
non_lora_forward(x[:, -img_sequence_length*num_generated_imgs:], *args, **kwargs)
), dim=1)
elif x.shape[1] == encoder_sequence_length * num_encoder_sequences or x.shape[1] == encoder_sequence_length:
return lora_forward(x, *args, **kwargs)
elif x.shape[1] == img_sequence_length * num_imgs + encoder_sequence_length * num_encoder_sequences:
return torch.cat((
lora_forward(x[:, :(num_imgs - num_generated_imgs)*img_sequence_length], *args, **kwargs),
non_lora_forward(x[:, (num_imgs - num_generated_imgs)*img_sequence_length:-num_encoder_sequences*encoder_sequence_length], *args, **kwargs),
lora_forward(x[:, -num_encoder_sequences*encoder_sequence_length:], *args, **kwargs)
), dim=1)
elif x.shape[1] == 3072:
return non_lora_forward(x, *args, **kwargs)
else:
raise ValueError(
f"hacked_lora_forward receives unexpected sequence length: {x.shape[1]}, input shape: {x.shape}!"
)
return hacked_lora_forward.__get__(module, type(module))
for n, m in transformer.named_modules():
if isinstance(m, peft.tuners.lora.layer.Linear):
m.forward = create_hacked_forward(m)
# load LoRA weights
model_root = hf_hub_download(
repo_id="Kunbyte/DRA-Ctrl",
filename=f"{task}.safetensors",
resume_download=True)
try:
with safe_open(model_root, framework="pt") as f:
lora_weights = {}
for k in f.keys():
param = f.get_tensor(k)
if k.endswith(".weight"):
k = k.replace('.weight', '.default.weight')
lora_weights[k] = param
transformer.load_state_dict(lora_weights, strict=False)
except Exception as e:
raise ValueError(f'{e}')
transformer.requires_grad_(False)
pipe = HunyuanVideoImageToVideoPipeline(
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
vae=vae,
scheduler=copy.deepcopy(scheduler),
text_encoder_2=text_encoder_2,
tokenizer_2=tokenizer_2,
image_processor=image_processor,
)
# start generation
c_txt = None if condition_image_prompt == "" else condition_image_prompt
c_img = condition_image.resize((512, 512))
t_txt = target_prompt
if args.task not in ['subject_driven', 'style_transfer']:
if args.task == "canny":
def get_canny_edge(img):
img_np = np.array(img)
img_gray = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(img_gray, 100, 200)
edges_tmp = Image.fromarray(edges).convert("RGB")
edges_tmp.save(os.path.join(save_dir, f"edges.png"))
edges[edges == 0] = 128
return Image.fromarray(edges).convert("RGB")
c_img = get_canny_edge(c_img)
elif args.task == "coloring":
c_img = (
c_img.resize((args.img_size, args.img_size))
.convert("L")
.convert("RGB")
)
elif args.task == "deblurring":
blur_radius = 10
c_img = (
c_img.convert("RGB")
.filter(ImageFilter.GaussianBlur(blur_radius))
.resize((args.img_size, args.img_size))
.convert("RGB")
)
elif args.task == "depth":
def get_depth_map(img):
from transformers import pipeline
depth_pipe = pipeline(
task="depth-estimation",
model="LiheYoung/depth-anything-small-hf",
device="cpu",
)
return depth_pipe(img)["depth"].convert("RGB").resize((args.img_size, args.img_size))
c_img = get_depth_map(c_img)
c_img.save(os.path.join(save_dir, f"depth.png"))
k = (255 - 128) / 255
b = 128
c_img = c_img.point(lambda x: k * x + b)
elif args.task == "depth_pred":
c_img = c_img
elif args.task == "fill":
c_img = c_img.resize((args.img_size, args.img_size)).convert("RGB")
x1, x2 = args.fill_x1, args.fill_x2
y1, y2 = args.fill_y1, args.fill_y2
mask = Image.new("L", (args.img_size, args.img_size), 0)
draw = ImageDraw.Draw(mask)
draw.rectangle((x1, y1, x2, y2), fill=255)
if args.inpainting:
mask = Image.eval(mask, lambda a: 255 - a)
c_img = Image.composite(
c_img,
Image.new("RGB", (args.img_size, args.img_size), (255, 255, 255)),
mask
)
c_img.save(os.path.join(save_dir, f"mask.png"))
c_img = Image.composite(
c_img,
Image.new("RGB", (args.img_size, args.img_size), (128, 128, 128)),
mask
)
elif args.task == "sr":
c_img = c_img.resize((int(args.img_size / 4), int(args.img_size / 4))).convert("RGB")
c_img.save(os.path.join(save_dir, f"low_resolution.png"))
c_img = c_img.resize((args.img_size, args.img_size))
c_img.save(os.path.join(save_dir, f"low_to_high.png"))
gen_img = pipe(
image=c_img,
prompt=[t_txt.strip()],
prompt_condition=[c_txt.strip()] if c_txt is not None else None,
prompt_2=[t_txt],
height=512,
width=512,
num_frames=5,
num_inference_steps=50,
guidance_scale=6.0,
num_videos_per_prompt=1,
generator=torch.Generator(device=pipe.transformer.device).manual_seed(0),
output_type='pt',
image_embed_interleave=4,
frame_gap=48,
mixup=True,
mixup_num_imgs=2,
).frames
gen_img = gen_img[:, 0:1, :, :, :]
gen_img = gen_img.squeeze(0).squeeze(0).cpu().to(torch.float32).numpy()
gen_img = np.transpose(gen_img, (1, 2, 0))
gen_img = (gen_img * 255).astype(np.uint8)
gen_img = Image.fromarray(gen_img)
return gen_img
def create_app():
with gr.Blocks() as app:
gr.Markdown(header, elem_id="header")
with gr.Row(equal_height=False):
with gr.Column(variant="panel", elem_classes="inputPanel"):
condition_image = gr.Image(
type="pil", label="Condition Image", width=300, elem_id="input"
)
task = gr.Radio(
[
("Subject-driven Image Generation", "subject_driven"),
("Canny-to-Image", "canny"),
("Colorization", "coloring"),
("Deblurring", "deblurring"),
("Depth-to-Image", "depth"),
("Depth Prediction", "depth_pred"),
("In/Out-Painting", "fill"),
("Super-Resolution", "sr"),
("Style Transfer", "style_transfer")
],
label="Task Selection",
value="subject_driven",
interactive=True,
elem_id="task_selection"
)
gr.Markdown(notice, elem_id="notice")
target_prompt = gr.Textbox(lines=2, label="Target Prompt", elem_id="text")
condition_image_prompt = gr.Textbox(lines=2, label="Condition Image Prompt", elem_id="text")
submit_btn = gr.Button("Run", elem_id="submit_btn")
with gr.Column(variant="panel", elem_classes="outputPanel"):
output_image = gr.Image(type="pil", elem_id="output")
submit_btn.click(
fn=process_image_and_text,
inputs=[condition_image, target_prompt, condition_image_prompt, task],
outputs=output_image,
)
return app
if __name__ == "__main__":
create_app().launch(debug=True, ssr_mode=False)
|